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Hash Tables: Review

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

« A hash table is an array of some fixed size hash table
— But growable as we’ll see 0
client hash table library

collision?  collision
resolution

E mm=) int mmmss) table-index

TableSize -1
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Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— ldeas?
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Separate Chaining
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Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as It sounds
Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10
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Thoughts on chaining

 Worst-case time for £ind?
— Linear
— But only with really bad luck or bad hash function

— So not worth avoiding (e.g., with balanced trees at each
bucket)

« Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

— Linked list vs. array vs. chunked list (lists should be short!)
— Move-to-front

— Maybe leave room for 1 element (or 27?) in the table itself, to
optimize constant factors for the common case

« A time-space trade-off...
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Time vs. space (constant factors only here)
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More rigorous chaining analysis

Definition: The load factor, A, of a hash table is

P N <« number of elements
- TableSize

Under chaining, the average number of elements per bucket is
So if some inserts are followed by random finds, then on average:

 Each unsuccessful £ind compares against items
« Each successful £ind compares against items
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More rigorous chaining analysis

Definition: The load factor, A, of a hash table is

P N <« number of elements
- TableSize

Under chaining, the average number of elements per bucket is 4
So if some inserts are followed by random finds, then on average:
 Each unsuccessful £ind compares against A items

« Each successful £ind compares against A/ 2 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining
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Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. If full, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

« Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 /
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Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full,

— try (h(key) + 1)

TableSize. Iffull,

— try (h(key) + 2) % TableSize. Iffull,

— try (h(key) + 3)

« Example: insert 38, 19, 8, 109, 10
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Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table

Trying the next spot is called probing
— We just did linear probing
« ith probe was (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(1) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)
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Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ©)

&
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Other operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data
— Unsuccessful search when reach empty position

What about delete?
— Must use “lazy” deletion. Why?
« Marker indicates “no data here, but don’t stop probing”
— Note: delete with chaining is plain-old list-remove

Fall 2013 CSE373: Data Structures & Algorithms 21



(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

o) el
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clusters, which lead to ¥ l{luummmmuutﬂmuuuwu s

long probing sequences - £ Lﬂmmmuummuuumummu L
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Analysis of Linear Probing

« Trivial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search:
1+

2\ (@-aY
— Successful search: 1 1

_ 1_|_—

2( (1—1)]

« This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)
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In a chart

« Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 » 350.00
14.00 ] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . O _ _
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 {?-Uﬁ 100.00
2'00 e linear probing S c0.00 / ——linear probing
: found > ' ] found
0.00 <  0.00 i'/
= 00w ~N OO M O M~ = — 00 = O o 00 ™~ W = M 4 -
OO0 A NNMS NWnmO NN O =4 AN mMmS NV~ O
OO0 0 COo0OCOo oo oo o OO0 000000 o oo
Load Factor Load Factor

« By comparison, chaining performance is linear in A and has no
trouble with A2>1
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Quadratic probing

We can avoid primary clustering by changing the probe function
(h(key) + £(1i)) % TableSize

A common technigue is quadratic probing:

£(i) = i?
— S0 probe segquence is:

« 0" probe: h(key) % TableSize
1st probe: (h(key) + 1) $ TableSize
2"d probe: (h(key) + 4) % TableSize
3 probe: (h(key) + 9) % TableSize

°
X

i probe: (h(key) + i2?) % TableSize

Intuition: Probes quickly “leave the neighborhood”

Fall 2013 CSE373: Data Structures & Algorithms 25



Quadratic Probing Example
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Quadratic Probing Example
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Quadratic Probing Example
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18
49
58
79
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Quadratic Probing Example
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Another Quadratic Probing Example
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TableSize =7

Insert:
76

40

48

5

55

47
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(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)
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Another Quadratic Probing Example
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(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6
» Excel shows takes “at least” 50 probes and a pattern

* Proof uses induction and (n2+5) % 7
* Infact, for all c and k, (n%2+c) % k

Fall 2013
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From Bad News to Good News

« Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

« Good news:

— If TableSize is prime and A < Y, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A <% and TableSize is prime, no need to
detect cycles

— Optional: Proof is posted in lecturel2. txt

 Also, slightly less detailed proof in textbook
« Key fact: ForprimeTand 0 < i,j < T/2wherei # 7,
(k + i%?) $ T # (k + j%) % T (i.e., noindex repeat)
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Clustering reconsidered

« Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

« Butit's no help if keys initially hash to the same index
— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...
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Double hashing

ldea:

— Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

— So make the probe function £(i) = i*g(key)

Probe sequence:

« 0" probe: h(key) % TableSize
1st probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
34 probe: (h(key) + 3*g(key)) % TableSize

" probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0
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Double-hashing analysis

» Intuition: Because each probe is “jlumping” by g (key) each
time, we “leave the neighborhood” and “go different places from
other initial collisions”

« But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

— It is known that this cannot happen in at least one case:
* h(key) = key % p
* g(key) = q - (key % q)
2 < g<wp
« p and g are prime
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More double-hashing facts

Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p IS
1/p

Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search (intuitive): 1
1-4

— Successful search (less intuitive):  q 1
zIoge(mj

Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad
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Charts

Uniform Hashing

Uniform Hashing
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Rehashing

» As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything

« With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

* For open addressing, half-full is a good rule of thumb

 New table size
— Twice-as-big is a good idea, except, uhm, that won’t be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code since you won't
grow more than 20-30 times
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