CSE373: Data Structures & Algorithms
Lecture 12: Hash Collisions

Dan Grossman
Fall 2013

Hash Tables: Review

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

« A hash table is an array of some fixed size hash table
— But growable as we’ll see 0
client hash table library

collision? collision
resolution

E mm=) int mmmss) table-index

TableSize -1

Fall 2013 CSE373: Data Structures & Algorithms 2

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— ldeas?

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

© 00 N OO O & WO NN+, O

~N 1l ~N 1 SN " S“" " SS“ NSNS NN N~

Fall 2013

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as It sounds
Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10

CSE373: Data Structures & Algorithms

Separate Chaining

10/ Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

A 4

As easy as It sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

© 00 N OO O & WO NN+, O
N Y Y Y Y N S

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

A 4

10

© 00 N OO O & WO NN+, O

~N |l N1 N1 " S~“""I'"S“"| " ~|

Fall 2013

A 4

22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as It sounds
Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10

CSE373: Data Structures & Algorithms

Separate Chaining

A 4

10| /

A 4

22

0

1 /
2

3 /
4 /
5 /
6 /
7

8 /
9 /

Fall 2013

A 4

10/

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as It sounds
Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10

CSE373: Data Structures & Algorithms

Separate Chaining

A 4

10| /

A 4

12

Chaining:
All keys that map to the same
table location are kept in a list

0

1 /
2

3 /
4 /
5 /
6 /
7

8 /
9 /

Fall 2013

A 4

10/

A 4

22| /

(a.k.a. a “chain” or “bucket”)
As easy as It sounds
Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10

CSE373: Data Structures & Algorithms

Separate Chaining

A 4

10| /

A 4

42

Chaining:
All keys that map to the same

0

1 /
2

3 /
4 /
5 /
6 /
7

8 /
9 /

Fall 2013

A 4

10/

A 4

12

table location are kept in a list

A 4

22| /

(a.k.a. a “chain” or “bucket”)
As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

CSE373: Data Structures & Algorithms

Thoughts on chaining

 Worst-case time for £ind?
— Linear
— But only with really bad luck or bad hash function

— So not worth avoiding (e.g., with balanced trees at each
bucket)

« Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

— Linked list vs. array vs. chunked list (lists should be short!)
— Move-to-front

— Maybe leave room for 1 element (or 27?) in the table itself, to
optimize constant factors for the common case

« A time-space trade-off...

Fall 2013 CSE373: Data Structures & Algorithms 10

Time vs. space (constant factors only here)

10 | /
/

A 4

10| /

X

A 4

A 4

22| /

42 12

A 4

A 4

A 4

42 12 22| /

~ YN | YN |~

A 4

107 /

© 00 N OO O & WO NN —», O
~

© O N O Ul A WN BB O
XX |[=[X|X]|X|X

Fall 2013 CSE373: Data Structures & Algorithms 11

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is

P N <« number of elements
- TableSize

Under chaining, the average number of elements per bucket is
So if some inserts are followed by random finds, then on average:

 Each unsuccessful £ind compares against items
« Each successful £ind compares against items

Fall 2013 CSE373: Data Structures & Algorithms 12

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is

P N <« number of elements
- TableSize

Under chaining, the average number of elements per bucket is 4
So if some inserts are followed by random finds, then on average:
 Each unsuccessful £ind compares against A items

« Each successful £ind compares against A/ 2 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 CSE373: Data Structures & Algorithms 13

Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. If full, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

« Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 /

Fall 2013 CSE373: Data Structures & Algorithms

14

Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. If full, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

« Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 19

Fall 2013 CSE373: Data Structures & Algorithms

15

Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. If full, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

« Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 19

Fall 2013 CSE373: Data Structures & Algorithms

16

Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full,

— try (h(key) + 1)

TableSize. Iffull,

— try (h(key) + 2) % TableSize. Iffull,

— try (h(key) + 3)

« Example: insert 38, 19, 8, 109, 10

Fall 2013

CSE373: Data Structures & Algorithms

TableSize. Iffull...

© 00 N OO O & WO NN, O

109

~N | N | N | N | YN~ =~

38

19

17

Alternative: Use empty space in the table

« Another simple idea: If h (key) is already full,

— try (h(key) + 1)

TableSize. Iffull,

— try (h(key) + 2) % TableSize. Iffull,

— try (h(key) + 3)

« Example: insert 38, 19, 8, 109, 10

Fall 2013

CSE373: Data Structures & Algorithms

TableSize. Iffull...

© 00 N OO O & WO NN, O

109

10

~N | YN YN | Y~ | &~

38

19

18

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table

Trying the next spot is called probing
— We just did linear probing
« ith probe was (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(1) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

Fall 2013 CSE373: Data Structures & Algorithms 19

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ©)

&

Fall 2013 CSE373: Data Structures & Algorithms

Other operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data
— Unsuccessful search when reach empty position

What about delete?
— Must use “lazy” deletion. Why?
« Marker indicates “no data here, but don’t stop probing”
— Note: delete with chaining is plain-old list-remove

Fall 2013 CSE373: Data Structures & Algorithms 21

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

o) el

Tends to produce o uuugmmmuum@uuuwuii:imwuu

clusters, which lead to ¥ l{luummmmuutﬂmuuuwu s

long probing sequences - £ Lﬂmmmuummuuumummu L

« Called primary uiimmmwwwm%wmmmjﬁ:w

. L . o8

§u$Eﬂng o uumumgmmmuééwuuummufmummuu

« Saw this starting in .mwwmumwmguummmu]
our example LI . mmwumwumwu

e sisenel e égggﬁmmummuu

Ll

LT

T L.

- umummwmmmmmmmmu
UL

L] [R. Sedgewick]

Fall 2013 CSE373: Data Structures & Algorithms 22

Analysis of Linear Probing

« Trivial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search:
1+

2\ (@-aY
— Successful search: 1 1

_ 1_|_—

2((1—1)]

« This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Fall 2013 CSE373: Data Structures & Algorithms

23

In a chart

« Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 » 350.00
14.00] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . O _ _
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 {?-Uﬁ 100.00
2'00 e linear probing S c0.00 / ——linear probing
: found > '] found
0.00 < 0.00 i'/
= 00w ~N OO M O M~ = — 00 = O o 00 ™~ W = M 4 -
OO0 A NNMS NWnmO NN O =4 AN mMmS NV~ O
OO0 0 COo0OCOo oo oo o OO0 000000 o oo
Load Factor Load Factor

« By comparison, chaining performance is linear in A and has no
trouble with A2>1

Fall 2013 CSE373: Data Structures & Algorithms 24

Quadratic probing

We can avoid primary clustering by changing the probe function
(h(key) + £(1i)) % TableSize

A common technigue is quadratic probing:

£(i) = i?
— S0 probe segquence is:

« 0" probe: h(key) % TableSize
1st probe: (h(key) + 1) $ TableSize
2"d probe: (h(key) + 4) % TableSize
3 probe: (h(key) + 9) % TableSize

°
X

i probe: (h(key) + i2?) % TableSize

Intuition: Probes quickly “leave the neighborhood”

Fall 2013 CSE373: Data Structures & Algorithms 25

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

TableSize=10

Insert:

89

18

49

58

79

CSE373: Data Structures & Algorithms

26

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

TableSize=10

Insert:

89

18

49

58

79

89

CSE373: Data Structures & Algorithms

27

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

TableSize=10

Insert:

89

18

49

58

79

18

89

CSE373: Data Structures & Algorithms

28

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

49

TableSize=10

Insert:

89

18

49

58

79

18

89

CSE373: Data Structures & Algorithms

29

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

49 TableSize=10
Insert:
58 89
18
49
58
79
18
89

CSE373: Data Structures & Algorithms

30

Quadratic Probing Example

Fall 2013

© 00 N OO O & WO NN+, O

49 TableSize=10
Insert:
58 89
79 18
49
58
79
18
89

CSE373: Data Structures & Algorithms

31

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

32

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

33

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

34

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

35

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

Another Quadratic Probing Example

Fall 2013

o o1 A WO N - O

48

55

40

76

TableSize =7

Insert:
76

40

48

5

55

47

CSE373: Data Structures & Algorithms

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

37

Another Quadratic Probing Example

o o1 A WO N - O

48

5

55

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 =5)

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6
» Excel shows takes “at least” 50 probes and a pattern

* Proof uses induction and (n2+5) % 7
* Infact, for all c and k, (n%2+c) % k

Fall 2013

CSE373: Data Structures & Algorithms

((n-7)2+5

)
((n-k)2%+c)

From Bad News to Good News

« Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

« Good news:

— If TableSize is prime and A < Y, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A <% and TableSize is prime, no need to
detect cycles

— Optional: Proof is posted in lecturel2. txt

 Also, slightly less detailed proof in textbook
« Key fact: ForprimeTand 0 < i,j < T/2wherei # 7,
(k + i%?) $ T # (k + j%) % T (i.e., noindex repeat)

Fall 2013 CSE373: Data Structures & Algorithms 39

Clustering reconsidered

« Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

« Butit's no help if keys initially hash to the same index
— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

Fall 2013 CSE373: Data Structures & Algorithms 40

Double hashing

ldea:

— Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

— So make the probe function £(i) = i*g(key)

Probe sequence:

« 0" probe: h(key) % TableSize
1st probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
34 probe: (h(key) + 3*g(key)) % TableSize

" probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

Fall 2013 CSE373: Data Structures & Algorithms 41

Double-hashing analysis

» Intuition: Because each probe is “jlumping” by g (key) each
time, we “leave the neighborhood” and “go different places from
other initial collisions”

« But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

— It is known that this cannot happen in at least one case:
* h(key) = key % p
* g(key) = q - (key % q)
2 < g<wp
« p and g are prime

Fall 2013 CSE373: Data Structures & Algorithms 42

More double-hashing facts

Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p IS
1/p

Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —w)

— Unsuccessful search (intuitive): 1
1-4

— Successful search (less intuitive): q 1
zIoge(mj

Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

Fall 2013 CSE373: Data Structures & Algorithms 43

Charts

Uniform Hashing

Uniform Hashing

» 7.00 » 120.00
CIJ CIJ
o 6.00 // L 100.00
E 5.00 E
a / a 80.00
“= 4.00 =
o - / O 50.00
* 300 uniform hashing =3 ' = uniform hashing
Y / not found @ not found
80 2.00 —_—— & 40.00
a 100 = uniform hashing a 20.00 uniform hashing
> found > ; found
< 0.00 < 0.0
= 0 ! N0 MmO M~ s = o0 = O O 00 ™~ W W s Mmoo
OO 4 NN M NN 0w~ O A A NN MmN W~ O
L I e TR s R s Y s T e Y s [s T o T s Y s R o o 00 0O 00000 oo
Load Factor Load Factor
Linear Probing Linear Probing
» 16.00 » 350.00
& 1400] 2 30000
o o
= 12,00 / < 250.00
Q1000 a
S . / %5 200.00
=3 8.00 / ———linear probing #* 150.00 ——linear probing
o 6.00 / not found v not found
%0 4.00 %0 100.00 /
3 200 -~ linear prohing o 5000 linear prohing
> found > ﬁ ! found
< 0.00 < 000
= 00 " ~N Oy o M O M~ s o~ o0 = O O 00 M~ W s N oy o
OO = NN M SN W~ NS O — = &N M N0~ 0O
[I e I s R s [s T e T s T s Y s Y s Y o Y o o 0O O 0 o0 o oo oo
Load Factor Load Factor

Rehashing

» As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything

« With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

* For open addressing, half-full is a good rule of thumb

 New table size
— Twice-as-big is a good idea, except, uhm, that won’t be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code since you won't
grow more than 20-30 times

Fall 2013 CSE373: Data Structures & Algorithms 45

