Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$

CSE373: Data Structures \& Algorithms

Lecture 15: Shortest Paths

Dan Grossman

Fall 2013

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Dijkstra

- Algorithm named after its inventor Edsger Dijkstra (1930-2002)

Dijkstra's algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Many people have a favorite Dijkstra story, even if they never met him
- My favorite quotation: "computer science is no more about computers than astronomy is about telescopes"
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it! (But we need to prove it produces correct answers)

The Algorithm

1. For each node v, set v.cost $=\infty$ and v.known $=$ false
2. Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v, u) with weight w,
```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}
```

Fall 2013

Example \#1

Important features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Example \#1

Example \#1

CSE373: Data Structures \& Algorithms

Example \#1

Order Added to Known Set:
A, C, B, D, F

Fall 2013
CSE373: Data Structures \& Algorithms

Example \#1

Example \#1

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
- Helps give intuition of why the algorithm works

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to E ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
$\mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{F}, \mathrm{H}, \mathrm{G}, \mathrm{E}$

Fall 2013
CSE373: Data Structures \& Algorithms
20

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:

A

vertex	known?	cost	path
A	Y	0	
B		$? ?$	
C		≤ 2	A
D		≤ 1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A, D

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C

Fall 2013
CSE373: Data Structures \& Algorithms
25

Example \#2

Order Added to Known Set:

A, D, C, E, B

Fall 2013
CSE373: Data Structures \& Algorithms

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Example \#3

How will the best-cost-so-far for Y proceed? $90,81,72,63,54, \ldots$
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) {
                    a.cost = b.cost + weight((b,a))
                    a.path = b
            }
}
```


Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
        b = deleteMin()
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) {
                decreaseKey(a,"new cost - old cost")
                a.path = b
            }
}

\section*{Efficiency, second approach}

Use pseudocode to determine asymptotic run-time
```

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false - O(|V|)
start.cost = 0
build-heap with all nodes
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost) { OO(|E|log|V|)
decreaseKey(a,"new cost - old cost")
a.path = b
}
}

