Spanning Trees

CSE373: Data Structures \& Algorithms Lecture 17: Minimum Spanning Trees

Dan Grossman

Fall 2013

- A simple problem: Given a connected undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a minimal subset of edges such that \mathbf{G} is still connected
- A graph $\mathbf{G 2} \mathbf{=}(\mathbf{V}, \mathbf{E} 2)$ such that $\mathbf{G} 2$ is connected and removing any edge from $\mathbf{E} 2$ makes $\mathbf{G} 2$ disconnected

Observations

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected

- So |E| >= |V|-1

4. A tree with $|\mathbf{V}|$ nodes has $|\mathbf{V}|-1$ edges

- So every solution to the spanning tree problem has |V|-1 edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
- Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

Spanning tree via DFS

```
spanning_tree(Graph G) {
    for each node i: i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
        for each j adjacent to i:
            if(!j.marked) {
                        add(i,j) to output
            f(j) // DFS
        }
}
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.
Time: $O(|E|)$
Fall 2013

Example

Stack
f(1)

Output:

Example

Stack
f(1)
$\mathrm{f}(2)$
f(7)

Output: $(1,2),(2,7)$

Fall 2013

Example

Stack
$f(1)$
$f(2)$
$f(7)$
$f(5)$
$f(4)$

Output: $(1,2),(2,7),(7,5),(5,4)$

Example

Stack
f(1)
f(2)

Output: $(1,2)$

Fall 2013

Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: $(1,2),(2,7),(7,5)$

Fall 2013
CSE373: Data Structures \& Algorithms

Example

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
$f(4) \mathrm{f}(6)$
f(3)

Output: $(1,2),(2,7),(7,5),(5,4),(4,3),(5,6)$

Example

Stack

$f(1)$
$f(2)$
$f(7)$
$f(5)$
$f(4) f(6)$
$f(3)$

Output: $(1,2),(2,7),(7,5),(5,4),(4,3),(5,6)$

Fall 2013

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6),

Example

Edges in some arbitrary order:

$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:

$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7)

Fall 2013
CSE373: Data Structures \& Algorithms
20

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Cycle Detection

- To decide if an edge could form a cycle is $O(|\mathbf{V}|)$ because we may need to traverse all edges already in the output
- So overall algorithm would be $O(|\mathbf{V}||\mathrm{E}|)$
- But there is a faster way we know: use union-find!
- Initially, each item is in its own 1-element set
- Union sets when we add an edge that connects them
- Stop when we have one set

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: $\quad u$ and v are connected in output-so-far
iff
u and v in the same set

- Initially, each node is in its own set
- When processing edge (\mathbf{u}, v):
- If find(u) equals find(v), then do not add the edge
- Else add the edge and union (find (u), find (v))
- O(|E|) operations that are almost $O(1)$ amortized

Summary So Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is almost $O(|E|)$
- Using union-find "as a black box"

But really want to solve the minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be O(|E|log|V|)

Getting to the Point

Algorithm \#

Shortest-path is to Dijkstra's Algorithm as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2
Kruskal's Algorithm for Minimum Spanning Tree
is
Exactly our $2^{\text {nd }}$ approach to spanning tree but process edges in cost order

Prim's Algorithm Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra "picked edge with closest known distance to source"

- That is not what we want here
- Otherwise identical (!)

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Choose any node v
a) Mark vas known
b) For each edge (\mathbf{v}, u) with weight \mathbf{w}, set u. cost=w and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (\mathbf{v}, u) with weight w ,
```
if(w < u.cost) {
```

 u.cost \(=\mathrm{w}\);
 u.prev = v;
 \}

Example

Fall 2013
CSE373: Data Structures \& Algorithms

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		2	A
D		1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Fall 2013
CSE373: Data Structures \& Algorithms
32

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

Fall 2013
CSE373: Data Structures \& Algorithms
34

Example

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

Analysis

- Correctness ??
- A bit tricky
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- O(|E|log|V|) using a priority queue
- Costs/priorities are just edge-costs, not path-costs

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size $<|\mathbf{V}|-\mathbf{1}$

- Consider next smallest edge (u,v)
- if find (u, v) indicates u and v are in different sets
- output (u,v)
- union(find(u), find(v))

Recall invariant:
u and v in same set if and only if connected in output-so-far

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

Fall 2013
CSE373: Data Structures \& Algorithms
38

Kruskal's Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: $O(|E| \log |E|)$ (next course topic)
- Iterate through edges using union-find for cycle detection almost O (|E|)

Somewhat better:

- Floyd's algorithm to build min-heap with edges $O(|E|)$
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|E| l o g|E|)$
- Not better worst-case asymptotically, but often stop long before considering all edges

Example

Edges in sorted order:
$1:(\mathrm{A}, \mathrm{D}),(\mathrm{C}, \mathrm{D}),(\mathrm{B}, \mathrm{E}),(\mathrm{D}, \mathrm{E})$
2: $(\mathrm{A}, \mathrm{B}),(\mathrm{C}, \mathrm{F}),(\mathrm{A}, \mathrm{C})$

Output:

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F, G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(\mathrm{D}, \mathrm{G}),(\mathrm{B}, \mathrm{D})$
6: (D,F)
10: (F,G)

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$:

Two disjoint cases:

- If $\{e\} \subseteq \mathrm{T}$: Then $\mathrm{F} \subseteq \mathrm{T}$ and we're done
- Else \mathbf{e} forms a cycle with some simple path (call it \mathbf{p}) in \mathbf{T}
- Must be since T is a spanning tree

The inductive proof set-up

Let F (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

- Therefore, once $|\mathrm{F}|=|\mathrm{V}|-1$, we have an MST

Proof: By induction on $|\mathbf{F}|$
Base case: $|\mathbf{F}|=\mathbf{0}$: The empty set is a subset of all MSTs

Inductive case: $|\mathbf{F}|=\mathbf{k}+\mathbf{1}$: By induction, before adding the $(\mathrm{k}+1)^{\text {th }}$ edge (call it e), there was some MST T such that $\mathbf{F}-\{\mathbf{e}\} \subseteq \mathbf{T} \ldots$

Fall 2013

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$ and e forms a cycle with $\mathbf{p} \subseteq T$

- There must be an edge e2 on \mathbf{p} such that $\mathbf{e 2}$ is not in \mathbf{F}
- Else Kruskal would not have added e
- Claim: e2.weight $==$ e.weight

Staying a subset of some MST

- Claim: e2.weight $==$ e.weight
- If e2.weight > e.weight, then T is not an MST because $\mathrm{T}-\{\mathrm{e} 2\}+\{\mathrm{e}\}$ is a spanning tree with lower cost: contradiction
- If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and $F-\{e\} \subseteq T$. But $e 2$ is not in F : contradiction

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$ e forms a cycle with $\mathbf{p} \subseteq T$ e2 on \mathbf{p} is not in F e2.weight $==$ e.weight

- Claim: T-\{e2\}+\{e\} is an MST
- It is a spanning tree because $\mathrm{p}-\{\mathrm{e} 2\}+\{\mathrm{e}\}$ connects the same nodes as \mathbf{p}
- It is minimal because its cost equals cost of T, an MST
- Since $F \subseteq T-\{e 2\}+\{e\}, \quad F$ is a subset of one or more MSTs Done

