
CSE373: Data Structure & Algorithms

Lecture 18: Comparison Sorting

Dan Grossman

Fall 2013

Introduction to Sorting

• Stacks, queues, priority queues, and dictionaries all focused on

providing one element at a time

• But often we know we want “all the things” in some order

– Humans can sort, but computers can sort fast

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Search engine results by relevance

• …

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

 Fall 2013 2 CSE373: Data Structures & Algorithms

More Reasons to Sort

General technique in computing:

 Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change (and how much it will change)

– How much data there is

Fall 2013 3 CSE373: Data Structures & Algorithms

The main problem, stated carefully

For now, assume we have n comparable elements in an array and

we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

Effect:

– Reorganize the elements of A such that for any i and j,

if i < j then A[i] A[j]

– (Also, A must have exactly the same data it started with)

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Fall 2013 4 CSE373: Data Structures & Algorithms

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

Fall 2013 5 CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Fall 2013 6 CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Insertion Sort

• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

Fall 2013 7 CSE373: Data Structures & Algorithms

Insertion Sort

• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case O(n) Worst-case O(n2) “Average” case O(n2)

 start sorted start reverse sorted (see text)

Fall 2013 8 CSE373: Data Structures & Algorithms

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

 Fall 2013 9 CSE373: Data Structures & Algorithms

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Time?

 Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

 Always T(1) = 1 and T(n) = n + T(n-1)

Fall 2013 10 CSE373: Data Structures & Algorithms

Mystery

This is one implementation of which sorting algorithm (for ints)?

Fall 2013 11 CSE373: Data Structures & Algorithms

void mystery(int[] arr) {

 for(int i = 1; i < arr.length; i++) {

 int tmp = arr[i];

 int j;

 for(j=i; j > 0 && tmp < arr[j-1]; j--)

 arr[j] = arr[j-1];

 arr[j] = tmp;

 }

}

Note: Like with heaps, “moving the hole” is faster than

 unnecessary swapping (constant-factor issue)

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic

complexity

– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for non-small arrays that are

not already almost sorted

– Insertion sort may do well on small arrays

Fall 2013 12 CSE373: Data Structures & Algorithms

Aside: We Will Not Cover Bubble Sort

• It is not, in my opinion, what a “normal person” would think of

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common factors

Basically, almost everything it is good at some other algorithm is at

least as good at

– Perhaps people teach it just because someone taught it to

them?

Fun, short, optional read:

Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan,

SIGCSE 2003

http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Fall 2013 13 CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Fall 2013 14 CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Heap sort

• Sorting with a heap is easy:

– insert each arr[i], or better yet use buildHeap

– for(i=0; i < arr.length; i++)

 arr[i] = deleteMin();

• Worst-case running time: O(n log n)

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…

Fall 2013 15 CSE373: Data Structures & Algorithms

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!

Fall 2013 16 CSE373: Data Structures & Algorithms

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

But this reverse sorts –

how would you fix that?

“AVL sort”

• We can also use a balanced tree to:

– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

• But this cannot be made in-place and has worse constant

factors than heap sort

– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

Fall 2013 17 CSE373: Data Structures & Algorithms

“Hash sort”???

• Don’t even think about trying to sort with a hash table!

• Finding min item in a hashtable is O(n), so this would be a

slower, more complicated selection sort

Fall 2013 18 CSE373: Data Structures & Algorithms

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

(The name “divide and conquer” is rather clever.)

Fall 2013 19 CSE373: Data Structures & Algorithms

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

 Sort the right half of the elements (recursively)

 Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

 Divide elements into less-than pivot

 and greater-than pivot

 Sort the two divisions (recursively on each)

 Answer is sorted-less-than then pivot then

 sorted-greater-than

 Fall 2013 20 CSE373: Data Structures & Algorithms

Mergesort

• To sort array from position lo to position hi:

– If range is 1 element long, it is already sorted! (Base case)

– Else:

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…

Fall 2013 21 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

Example, Focus on Merging

Start with:

Fall 2013 22 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 23 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 24 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 25 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 26 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 27 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 28 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 29 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 30 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

Example, focus on merging

Start with:

Fall 2013 31 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

1 2 3 4 5 6 8 9

Example, Showing Recursion

Fall 2013 32 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

Some details: saving a little time

Fall 2013 33 CSE373: Data Structures & Algorithms

• What if the final steps of our merge looked like this:

• Wasteful to copy to the auxiliary array just to copy back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

Some details: saving a little time

• If left-side finishes first, just stop the merge and copy back:

• If right-side finishes first, copy dregs into right then copy back

Fall 2013 34 CSE373: Data Structures & Algorithms

copy

first

second

Some details: Saving Space and Copying

Simplest / Worst:

 Use a new auxiliary array of size (hi-lo) for every merge

Better:

 Use a new auxiliary array of size n for every merging stage

Better:

 Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):

 Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the

original array as the auxiliary array and vice-versa

– Need one copy at end if number of stages is odd

Fall 2013 35 CSE373: Data Structures & Algorithms

Swapping Original / Auxiliary Array (“best”)

(Arguably easier to code up without recursion at all)

Fall 2013 36 CSE373: Data Structures & Algorithms

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

• First recurse down to lists of size 1

• As we return from the recursion, swap between arrays

Linked lists and big data

We defined sorting over an array, but sometimes you want to sort

linked lists

One approach:

– Convert to array: O(n)

– Sort: O(n log n)

– Convert back to list: O(n)

Or: merge sort works very nicely on linked lists directly

– Heapsort and quicksort do not

– Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting

– Linear merges minimize disk accesses

– And can leverage multiple disks to get streaming accesses

Fall 2013 37 CSE373: Data Structures & Algorithms

Analysis

Having defined an algorithm and argued it is correct, we should

analyze its running time and space:

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

 T(1) = c1

 T(n) = 2T(n/2) + c2n

Fall 2013 38 CSE373: Data Structures & Algorithms

One of the recurrence classics…

For simplicity let constants be 1 – no effect on asymptotic answer

T(1) = 1 So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

 = 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n

 = 4T(n/4) + 2n = n + n log n

 = 4(2T(n/8) + n/4) + 2n = O(n log n)

 = 8T(n/8) + 3n

 ….

 = 2kT(n/2k) + kn

Fall 2013 39 CSE373: Data Structures & Algorithms

Or more intuitively…

This recurrence is common you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n

Fall 2013 40 CSE373: Data Structures & Algorithms

Quicksort

• Also uses divide-and-conquer

– Recursively chop into two pieces

– Instead of doing all the work as we merge together,

we will do all the work as we recursively split into halves

– Unlike merge sort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case

• Faster than merge sort in practice?

– Often believed so

– Does fewer copies and more comparisons, so it depends on

the relative cost of these two operations!

Fall 2013 41 CSE373: Data Structures & Algorithms

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

 Fall 2013 42 CSE373: Data Structures & Algorithms

Think in Terms of Sets

Fall 2013 43 CSE373: Data Structures & Algorithms

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

57 26

75
0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Example, Showing Recursion

Fall 2013 44 CSE373: Data Structures & Algorithms

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

Details

Have not yet explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted

– But as analysis will show, want the two partitions to be about

equal in size

• How to implement partitioning

– In linear time

– In place

Fall 2013 45 CSE373: Data Structures & Algorithms

Pivots

• Best pivot?

– Median

– Halve each time

• Worst pivot?

– Greatest/least element

– Problem of size n - 1

– O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

Fall 2013 CSE373: Data Structures & Algorithms 46

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range

– Does as well as any technique, but (pseudo)random number

generation can be slow

– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

– Common heuristic that tends to work well

Fall 2013 47 CSE373: Data Structures & Algorithms

Partitioning

• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]

2. Use two fingers i and j, starting at lo+1 and hi-1

3. while (i < j)

 if (arr[j] > pivot) j--

 else if (arr[i] < pivot) i++

 else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Fall 2013 48 CSE373: Data Structures & Algorithms

Example

• Step one: pick pivot as median of 3

– lo = 0, hi = 10

Fall 2013 49 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Fall 2013 50 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8

Analysis

• Best-case: Pivot is always the median

 T(0)=T(1)=1

 T(n)=2T(n/2) + n -- linear-time partition

 Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1

 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– O(n log n), not responsible for proof (in text)

Fall 2013 51 CSE373: Data Structures & Algorithms

Cutoffs

• For small n, all that recursion tends to cost more than doing a

quadratic sort

– Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:

– Could also use a cutoff for merge sort

– Cutoffs are also the norm with parallel algorithms

• Switch to sequential algorithm

– None of this affects asymptotic complexity

Fall 2013 52 CSE373: Data Structures & Algorithms

Cutoff skeleton

Fall 2013 53 CSE373: Data Structures & Algorithms

void quicksort(int[] arr, int lo, int hi) {

 if(hi – lo < CUTOFF)

 insertionSort(arr,lo,hi);

 else

 …

}

Notice how this cuts out the vast majority of the recursive calls

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree

