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Introduction to Sorting 

• Stacks, queues, priority queues, and dictionaries all focused on 

providing one element at a time 
 

• But often we know we want “all the things” in some order 

– Humans can sort, but computers can sort fast 

– Very common to need data sorted somehow 

• Alphabetical list of people 

• List of countries ordered by population 

• Search engine results by relevance 

• … 
 

• Algorithms have different asymptotic and constant-factor trade-offs 

– No single “best” sort for all scenarios 

– Knowing one way to sort just isn’t enough 
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More Reasons to Sort 

General technique in computing:  

 Preprocess data to make subsequent operations faster 

 

Example: Sort the data so that you can 

– Find the kth largest in constant time for any k 

– Perform binary search to find elements in logarithmic time 

 

Whether the performance of the preprocessing matters depends on 

– How often the data will change (and how much it will change) 

– How much data there is 
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The main problem, stated carefully 

For now, assume we have n comparable elements in an array and 

we want to rearrange them to be in increasing order 
 

Input: 

– An array A of data records 

– A key value in each data record 

– A comparison function (consistent and total) 
 

Effect: 

– Reorganize the elements of A such that for any i and j,       

if i < j then A[i]  A[j] 

– (Also, A must have exactly the same data it started with) 

– Could also sort in reverse order, of course 
 

An algorithm doing this is a comparison sort 
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Variations on the Basic Problem 

1. Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms needn’t do so) 
 

2. Maybe ties need to be resolved by “original array position” 

– Sorts that do this naturally are called stable sorts 

– Others could tag each item with its original position and 

adjust comparisons accordingly (non-trivial constant factors) 
 

3. Maybe we must not use more than O(1) “auxiliary space” 

– Sorts meeting this requirement are called in-place sorts 
 

4. Maybe we can do more with elements than just compare 

– Sometimes leads to faster algorithms 
 

5. Maybe we have too much data to fit in memory 

– Use an “external sorting” algorithm 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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… 
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External 

sorting 



Insertion Sort 

• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

 

• Alternate way of saying this: 

– Sort first two elements 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 

 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Insertion Sort 

• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

 

• Alternate way of saying this: 

– Sort first two elements 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 

 

• Time?  

    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 

           start sorted           start reverse sorted       (see text)   
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Selection sort 

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 

smallest elements in sorted order 

 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Selection sort 

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 

smallest elements in sorted order 

 

• Time?    

    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 

         Always T(1) = 1 and T(n) = n + T(n-1) 
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Mystery 

This is one implementation of which sorting algorithm (for ints)? 
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void mystery(int[] arr) { 

  for(int i = 1; i < arr.length; i++) { 

     int tmp = arr[i]; 

     int j; 

     for(j=i; j > 0 && tmp < arr[j-1]; j--) 

        arr[j] = arr[j-1]; 

     arr[j] = tmp; 

  } 

} 

Note: Like with heaps, “moving the hole” is faster than  

      unnecessary swapping (constant-factor issue) 



Insertion Sort vs. Selection Sort 

• Different algorithms 

 

• Solve the same problem 

 

• Have the same worst-case and average-case asymptotic 

complexity 

– Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted” 

 

• Other algorithms are more efficient for non-small arrays that are 

not already almost sorted 

– Insertion sort may do well on small arrays 

Fall 2013 12 CSE373: Data Structures & Algorithms 



Aside: We Will Not Cover Bubble Sort 

• It is not, in my opinion, what a “normal person” would think of 
 

• It doesn’t have good asymptotic complexity: O(n2) 
 

• It’s not particularly efficient with respect to common factors 
 

Basically, almost everything it is good at some other algorithm is at 

least as good at 

– Perhaps people teach it just because someone taught it to 

them? 
 

Fun, short, optional read:  

Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, 

SIGCSE 2003 

http://www.cs.duke.edu/~ola/bubble/bubble.pdf 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Heap sort 

• Sorting with a heap is easy: 

– insert each arr[i], or better yet use buildHeap 

– for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

• Worst-case running time: O(n log n) 

 

• We have the array-to-sort and the heap 

– So this is not an in-place sort 

– There’s a trick to make it in-place… 
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In-place heap sort 

– Treat the initial array as a heap (via buildHeap) 

– When you delete the ith  element, put it at arr[n-i] 

• That array location isn’t needed for the heap anymore! 
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4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 

deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  

how would you fix that? 



“AVL sort” 

• We can also use a balanced tree to: 

– insert each element: total time O(n log n) 

– Repeatedly deleteMin: total time O(n log n) 

• Better: in-order traversal O(n), but still O(n log n) overall 

 

• But this cannot be made in-place and has worse constant 

factors than heap sort 

– both are O(n log n) in worst, best, and average case 

– neither parallelizes well 

– heap sort is better 
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“Hash sort”??? 

 

• Don’t even think about trying to sort with a hash table! 

 

• Finding min item in a hashtable is O(n), so this would be a 

slower, more complicated selection sort 
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Divide and conquer 

Very important technique in algorithm design 

 

1. Divide problem into smaller parts 

 

2. Independently solve the simpler parts  

– Think recursion 

– Or potential parallelism 

 

3. Combine solution of parts to produce overall solution 

 

(The name “divide and conquer” is rather clever.) 
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Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  

       and greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is sorted-less-than then pivot then     

                      sorted-greater-than 
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Mergesort 

• To sort array from position lo to position hi: 

– If range is 1 element long, it is already sorted! (Base case) 

– Else:  

• Sort from lo to (hi+lo)/2 

• Sort from (hi+lo)/2 to hi 

• Merge the two halves together 
 

• Merging takes two sorted parts and sorts everything 

– O(n) but requires auxiliary space… 
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8 2 9 4 5 3 1 6 



Example, Focus on Merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 

(not magic )   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

1 2 3 4 5 6 8 9 



Example, Showing Recursion 
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8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 



Some details: saving a little time 
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• What if the final steps of our merge looked like this: 

 

 

 

 

 

 

 

 

• Wasteful to copy to the auxiliary array just to copy back… 

2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 

 

 

 

 

Auxiliary array 



Some details: saving a little time 

• If left-side finishes first, just stop the merge and copy back: 

 

 

 

 

 

• If right-side finishes first, copy dregs into right then copy back 
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copy 

first 

second 



Some details: Saving Space and Copying 

Simplest / Worst:  

 Use a new auxiliary array of size (hi-lo) for every merge 

 

Better: 

 Use a new auxiliary array of size n for every merging stage 

 

Better: 

 Reuse same auxiliary array of size n for every merging stage 

 

Best (but a little tricky): 

 Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the 

original array as the auxiliary array and vice-versa 

– Need one copy at end if number of stages is odd 
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Swapping Original / Auxiliary Array (“best”) 

(Arguably easier to code up without recursion at all) 
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Merge by 1 

 

Merge by 2 

 

Merge by 4 

 

Merge by 8 

 

Merge by 16 

 

Copy if Needed 

• First recurse down to lists of size 1 

• As we return from the recursion, swap between arrays 



Linked lists and big data 

We defined sorting over an array, but sometimes you want to sort 

linked lists 
 

One approach: 

– Convert to array: O(n) 

– Sort: O(n log n) 

– Convert back to list: O(n) 
 

Or: merge sort works very nicely on linked lists directly 

– Heapsort and quicksort do not 

– Insertion sort and selection sort do but they’re slower 
 

Merge sort is also the sort of choice for external sorting 

– Linear merges minimize disk accesses 

– And can leverage multiple disks to get streaming accesses 
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Analysis 

Having defined an algorithm and argued it is correct, we should 

analyze its running time and space: 

 

To sort n elements, we: 

– Return immediately if n=1 

– Else do 2 subproblems of size n/2 and then an O(n) merge 

 

Recurrence relation: 

  T(1) = c1 

      T(n) = 2T(n/2) + c2n 
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One of the recurrence classics… 

For simplicity let constants be 1 – no effect on asymptotic answer 

 

T(1) = 1                                            So total is 2kT(n/2k) + kn where 

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k    

        = 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n 

        = 4T(n/4) + 2n                                     = n + n log n 

        = 4(2T(n/8) + n/4) + 2n                        = O(n log n) 

        = 8T(n/8) + 3n 

        …. 

        = 2kT(n/2k) + kn     
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Or more intuitively… 

This recurrence is common you just “know” it’s O(n log n) 

 

Merge sort is relatively easy to intuit (best, worst, and average): 

• The recursion “tree” will have log n height 

• At each level we do a total amount of merging equal to n 
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Quicksort 

• Also uses divide-and-conquer 

– Recursively chop into two pieces 

– Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 

– Unlike merge sort, does not need auxiliary space 
 

• O(n log n) on average , but O(n2) worst-case  
 

• Faster than merge sort in practice? 

– Often believed so 

– Does fewer copies and more comparisons, so it depends on 

the relative cost of these two operations! 
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Quicksort Overview 

1. Pick a pivot element 

 

2. Partition all the data into: 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

 

3. Recursively sort A and C 

 

4. The answer is, “as simple as A, B, C”  

 

(Alas, there are some details lurking in this algorithm) 
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Think in Terms of Sets 
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13 
81 

92 

43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 
81 

92 

43 65 
31 

57 26 

75 
0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Example, Showing Recursion 
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2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 



Details 

Have not yet explained: 

 

• How to pick the pivot element 

– Any choice is correct: data will end up sorted 

– But as analysis will show, want the two partitions to be about 

equal in size 

 

• How to implement partitioning 

– In linear time 

– In place 
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Pivots 

• Best pivot? 

– Median 

– Halve each time 

 

 

 

• Worst pivot? 

– Greatest/least element 

– Problem of size n - 1 

– O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 
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Potential pivot rules 

While sorting arr from lo (inclusive) to hi (exclusive)… 

 

• Pick arr[lo] or arr[hi-1] 

– Fast, but worst-case occurs with mostly sorted input 

 

• Pick random element in the range 

– Does as well as any technique, but (pseudo)random number 

generation can be slow 

– Still probably the most elegant approach 

 

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 

– Common heuristic that tends to work well 
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Partitioning 

• Conceptually simple, but hardest part to code up correctly 

– After picking pivot, need to partition in linear time in place 

 

• One approach (there are slightly fancier ones): 

1. Swap pivot with arr[lo] 

2. Use two fingers i and j, starting at lo+1 and hi-1 

3. while (i < j) 

   if (arr[j] > pivot) j-- 

   else if (arr[i] < pivot) i++ 

   else swap arr[i] with arr[j] 

4. Swap pivot with arr[i] * 

 

*skip step 4 if pivot ends up being least element 
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Example 

• Step one: pick pivot as median of 3 

– lo = 0, hi = 10 
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6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

• Step two: move pivot to the lo position 

 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



Example 

Now partition in place 

 

 

Move fingers 

 

 

Swap 

 

Move fingers 

 

 

Move pivot 
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6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  

one swap during partition –  

this is a short example 

5 1 4 2 0 3 6 9 7 8 



Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n), not responsible for proof (in text) 
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Cutoffs 

• For small n, all that recursion tends to cost more than doing a 

quadratic sort 

– Remember asymptotic complexity is for large n 

 

• Common engineering technique: switch algorithm below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 

 

• Notes: 

– Could also use a cutoff for merge sort 

– Cutoffs are also the norm with parallel algorithms  

• Switch to sequential algorithm 

– None of this affects asymptotic complexity 
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Cutoff skeleton 
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void quicksort(int[] arr, int lo, int hi) { 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 

Notice how this cuts out the vast majority of the recursive calls  

–   Think of the recursive calls to quicksort as a tree 

–   Trims out the bottom layers of the tree 


