
CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Dan Grossman
Fall 2013

Welcome!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information
– “Classic” data structures / algorithms and how to analyze

rigorously their efficiency and when to use them
– Queues, dictionaries, graphs, sorting, etc.

Today in class:
• Introductions and course mechanics
• What this course is about
• Start abstract data types (ADTs), stacks, and queues

– Largely review

Fall 2013 2 CSE373: Data Structures and Algorithms

Concise to-do list

See your “first-day handout”

In next 24-48 hours:
• Adjust class email-list settings
• Take homework 0 (worth 0 points) as Catalyst quiz
• Read all course policies
• Read/skim Chapters 1 and 3 of Weiss book

– Relevant to Homework 1, due next week
– Will start Chapter 2 fairly soon

Possibly:
• Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/13au/

Fall 2013 3 CSE373: Data Structures and Algorithms

Course staff
Instructor: Dan Grossman
TA: Luyi Lu
TA: Conrad Nied
TA: Nicholas Shahan
TA: Jasmine Singh
TA: Sam Wilson

Fall 2013 4 CSE373: Data Structures and Algorithms

Dan: CSE Faculty for 10 years (omg!), loves teaching
• Also loves to talk �, you’ll surely learn lots of things about me

from class

Office hours, email, etc. on course web-page

Communication

• Course email list: cse373a_au13@u.washington.edu
– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic

• Course staff: cse373-staff@cs.washington.edu plus
individual emails

• Discussion board
– For appropriate discussions; TAs will monitor
– Encouraged, but won’t use for important announcements

• Anonymous feedback link
– For good and bad: if you don’t tell me, I don’t know

Fall 2013 5 CSE373: Data Structures and Algorithms

Course meetings

• Lecture (Dan)
– Materials posted, but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Optional meetings on Tuesday/Thursday afternoons
– Will post rough agenda roughly a day or more in advance
– Help on programming/tool background
– Helpful math review and example problems
– Again, optional but helpful
– May cancel some later in course (experimental)

• Office hours
– Use them: please visit me
– Ideally not just for homework questions (but that’s great too)

Fall 2013 6 CSE373: Data Structures and Algorithms

Course materials

• All lecture and section materials will be posted
– But they are visual aids, not always a complete description!
– If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java
– Good read, but only responsible for lecture/hw topics
– 3rd edition improves on 2nd, but we’ll support the 2nd

• A good Java reference of your choosing?
– Don’t struggle Googling for features you don’t understand?

Fall 2013 7 CSE373: Data Structures and Algorithms

Computer Lab

• College of Arts & Sciences Instructional Computing Lab
– http://depts.washington.edu/aslab/
– Or your own machine

• Will use Java for the programming assignments

• Eclipse is recommended programming environment

Fall 2013 8 CSE373: Data Structures and Algorithms

Course Work
• 6 homeworks (50%)

– Most involve programming, but also written questions
– Higher-level concepts than “just code it up”
– First programming assignment due week from Friday

• Midterm #1 Friday October 18 (15%)
• Midterm #2 Friday November 15 (15%)
• Final exam: Tuesday December 10, 2:30-4:20 (20%)

Fall 2013 9 CSE373: Data Structures and Algorithms

Collaboration and Academic Integrity

• Read the course policy very carefully
– Explains quite clearly how you can and cannot get/provide

help on homework and projects

• Always explain any unconventional action on your part
– When it happens, when you submit, not when asked

• I have promoted and enforced academic integrity since I was a

freshman
– I offer great trust but with little sympathy for violations
– Honest work is the most important feature of a university

Fall 2013 10 CSE373: Data Structures and Algorithms

Some details

• You are expected to do your own work
– Exceptions (group work), if any, will be clearly announced

• Sharing solutions, doing work for, or accepting work from others

is cheating

• Referring to solutions from this or other courses from previous
quarters is cheating

• But you can learn from each other: see the policy

Fall 2013 11 CSE373: Data Structures and Algorithms

Unsolicited advice

• Get to class on time!
– Instructor pet peeve (I will start and end promptly)
– First 2 minutes are much more important than last 2!
– Midterms will prove beyond any doubt you are capable

• Learn this stuff

– It is at the absolute core of computing and software
– Falling behind only makes more work for you

• Have fun

– So much easier to be motivated and learn

Fall 2013 12 CSE373: Data Structures and Algorithms

Today in Class

• Course mechanics: Did I forget anything?

• What this course is about

• Start abstract data types (ADTs), stacks, and queues

– Largely review

Fall 2013 13 CSE373: Data Structures and Algorithms

Data Structures

• Introduction to Algorithm Analysis

• Lists, Stacks, Queues

• Trees, Hashing, Dictionaries

• Heaps, Priority Queues

• Sorting

• Disjoint Sets

• Graph Algorithms

• May have time for other brief exposure to topics, maybe parallelism

Fall 2013 14 CSE373: Data Structures and Algorithms

Assumed background

• Prerequisite is CSE143

• Topics you should have a basic understanding of:
– Variables, conditionals, loops, methods, fundamentals of

defining classes and inheritance, arrays, single linked lists,
simple binary trees, recursion, some sorting and searching
algorithms, basic algorithm analysis (e.g., O(n) vs O(n2) and
similar things)

• We can fill in gaps as needed, but if any topics are new, plan on
some extra studying

Fall 2013 15 CSE373: Data Structures and Algorithms

What 373 is about

• Deeply understand the basic structures used in all software
– Understand the data structures and their trade-offs
– Rigorously analyze the algorithms that use them (math!)
– Learn how to pick “the right thing for the job”
– More thorough and rigorous take on topics introduced in

CSE143 (plus more new topics)

• Practice design, analysis, and implementation
– The elegant interplay of “theory” and “engineering” at the

core of computer science

• More programming experience (as a way to learn)

 Fall 2013 16 CSE373: Data Structures and Algorithms

Goals

• Be able to make good design choices as a developer, project
manager, etc.
– Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
• Be able to justify and communicate your design decisions

Dan’s take:

– Key abstractions used almost every day in just about
anything related to computing and software

– It is a vocabulary you are likely to internalize permanently

Fall 2013 17 CSE373: Data Structures and Algorithms

Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

A data structure supports certain operations, each with a:
– Meaning: what does the operation do/return
– Performance: how efficient is the operation

Examples:
– List with operations insert and delete
– Stack with operations push and pop

Fall 2013 18 CSE373: Data Structures and Algorithms

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

We ask ourselves questions like:

– Does this support the operations I need efficiently?
– Will it be easy to use, implement, and debug?
– What assumptions am I making about how my software will

be used? (E.g., more lookups or more inserts?)

Fall 2013 19 CSE373: Data Structures and Algorithms

Terminology

• Abstract Data Type (ADT)
– Mathematical description of a “thing” with set of operations

• Algorithm
– A high level, language-independent description of a step-by-

step process

• Data structure
– A specific organization of data and family of algorithms for

implementing an ADT

• Implementation of a data structure
– A specific implementation in a specific language

Fall 2013 20 CSE373: Data Structures and Algorithms

Example: Stacks

• The Stack ADT supports operations:
– isEmpty: have there been same number of pops as pushes
– push: takes an item
– pop: raises an error if empty, else returns most-recently

pushed item not yet returned by a pop
– … (possibly more operations)

• A Stack data structure could use a linked-list or an array or

something else, and associated algorithms for the operations

• One implementation is in the library java.util.Stack

Fall 2013 21 CSE373: Data Structures and Algorithms

Why useful

The Stack ADT is a useful abstraction because:
• It arises all the time in programming (e.g., see Weiss 3.6.3)

– Recursive function calls
– Balancing symbols (parentheses)
– Evaluating postfix notation: 3 4 + 5 *
– Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library

• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”
– Rather than, “create a linked list and add a node when…”

Fall 2013 22 CSE373: Data Structures and Algorithms

The Queue ADT

• Operations
 create
 destroy
 enqueue
 dequeue
 is_empty

• Just like a stack except:

– Stack: LIFO (last-in-first-out)
– Queue: FIFO (first-in-first-out)

• Just as useful and ubiquitous

Fall 2013 23 CSE373: Data Structures and Algorithms

F E D C B enqueue dequeue G A

Back Front

Circular Array Queue Data Structure

Fall 2013 24 CSE373: Data Structures and Algorithms

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}
// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

• What if queue is empty?
– Enqueue?
– Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

Linked List Queue Data Structure

Fall 2013 25 CSE373: Data Structures and Algorithms

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}
// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:
– May waste unneeded space

or run out of space
– Space per element excellent
– Operations very simple / fast
– Constant-time access to kth

element

– For operation insertAtPosition,
must shift all later elements
– Not in Queue ADT

Fall 2013 26 CSE373: Data Structures and Algorithms

This is stuff you should know after being awakened in the dark

List:
– Always just enough space
– But more space per element
– Operations very simple / fast
– No constant-time access to kth

element

– For operation insertAtPosition
must traverse all earlier elements
– Not in Queue ADT

The Stack ADT

Operations:
 create
 destroy
 push
 pop
 top
 is_empty

Can also be implemented with an array or a linked list

– This is Homework 1!
– Like queues, type of elements is irrelevant

Fall 2013 27 CSE373: Data Structures and Algorithms

A

B
C
D
E
F

E D C B A

F

