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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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How Fast Can We Sort? 

• Heapsort & mergesort have O(n log n) worst-case running time 

 

• Quicksort has O(n log n) average-case running time 

 

• These bounds are all tight, actually (n log n) 

 

• So maybe we need to dream up another algorithm with a lower 
asymptotic complexity, such as O(n) or O(n  log log n) 

– Instead: we know that this is impossible 

• Assuming our comparison model: The only operation an 

algorithm can perform on data items is a 2-element 

comparison 
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A General View of Sorting 

• Assume we have n elements to sort  

– For simplicity, assume none are equal (no duplicates) 

 

• How many permutations of the elements (possible orderings)? 

 

• Example, n=3 

  a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] 

      a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0] 

 

• In general, n choices for least element, n-1 for next, n-2 for next, … 

– n(n-1)(n-2)…(2)(1) = n!  possible orderings 

 

Fall 2013 4 CSE373: Data Structures & Algorithms 



Counting Comparisons 

• So every sorting algorithm has to “find” the right answer among 

the n! possible answers 

– Starts “knowing nothing”, “anything is possible” 

– Gains information with each comparison 

– Intuition: Each comparison can at best eliminate half  the 

remaining possibilities 

– Must narrow answer down to a single possibility 

 

• What we can show: 

   Any sorting algorithm must do at least (1/2)nlog n – (1/2)n    

  (which is (n log n)) comparisons 

– Otherwise there are at least two permutations among the n! 

possible that cannot yet be distinguished, so the algorithm 

would have to guess and could be wrong [incorrect algorithm] 
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Optional: Counting Comparisons 

• Don’t know what the algorithm is, but it cannot make progress 

without doing comparisons 

– Eventually does a first comparison “is a < b ?" 

– Can use the result to decide what second comparison to do 

– Etc.: comparison k can be chosen based on first k-1 results 

 

• Can represent this process as a decision tree 

– Nodes contain “set of remaining possibilities” 

• Root: None of the n! options  yet eliminated 

– Edges are “answers from a comparison” 

– The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know 

so far” as the algorithm progresses 
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Optional: One Decision Tree for n=3 
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a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

• The leaves contain all the possible orderings of a, b, c 

• A different algorithm would lead to a different tree 



Optional: Example if a < c < b 
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a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 



Optional: What the Decision Tree Tells Us 

• A binary tree because each comparison has 2 outcomes 

– (We assume no duplicate elements) 

– (Would have 1 outcome if algorithm asks redundant questions) 

 

• Because any data is possible, any algorithm needs to ask enough 

questions to produce all n! answers 

– Each answer is a different leaf 

– So the tree must be big enough to have n! leaves 

– Running any algorithm on any input will at best correspond to a 

root-to-leaf path in some decision tree with n! leaves 

– So no algorithm can have worst-case running time better than 

the height of a tree with n! leaves 

• Worst-case number-of-comparisons for an algorithm is an 

input leading to a longest path in algorithm’s decision tree 
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Optional: Where are we 

• Proven: No comparison sort can have worst-case running time 

better than the height of a binary tree with n! leaves 

– A comparison sort could be worse than this height, but it 

cannot be better 

 

• Now: a binary tree with n! leaves has height (n log n) 

– Height could be more, but cannot be less 

– Factorial function grows very quickly 

 

• Conclusion: Comparison sorting is  (n log n) 

– An amazing computer-science result: proves all the clever 

programming in the world cannot comparison-sort in linear 

time 
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Optional: Height lower bound 

• The height of a binary tree with L leaves is at least log2 L 

• So the height of our decision tree, h: 
 

   h  log2 (n!)                                                      property of binary trees 

      = log2 (n*(n-1)*(n-2)…(2)(1))             definition of factorial 

      = log2 n       + log2 (n-1) + … + log2 1        property of logarithms 

       log2 n       + log2 (n-1)  + … + log2 (n/2) drop smaller terms (0) 

       log2 (n/2)  + log2 (n/2)  + … + log2 (n/2) shrink terms to log2 (n/2) 

      = (n/2)log2 (n/2)                                       arithmetic 

      = (n/2)(log2 n - log2 2)              property of logarithms 

      = (1/2)nlog2 n – (1/2)n          arithmetic 

      “=“  (n log n) 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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How??? 

•  Change the model – assume     

   more than “compare(a,b)” 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers between 1 

and K (or any small range): 

– Create an array of size K  

– Put each element in its proper bucket (a.k.a. bin) 

– If data is only integers, no need to store more than a count of 

how times that bucket has been used 

• Output result via linear pass through array of buckets 
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count array 

1 3 

2 1 

3 2 

4 2 

5 3 

• Example:  

K=5 

input (5,1,3,4,3,2,1,1,5,4,5) 

   output: 1,1,1,2,3,3,4,4,5,5,5 



Analyzing Bucket Sort 

• Overall: O(n+K) 

– Linear in n, but also linear in K 

– (n log n) lower bound does not apply because this is not a 

comparison sort 

 

• Good when K is smaller (or not much larger) than n 

– We don’t spend time doing comparisons of duplicates 

 

• Bad when K is much larger than n 

– Wasted space; wasted time during linear O(K) pass 

 

• For data in addition to integer keys, use list at each bucket 
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Bucket Sort with Data 

• Most real lists aren’t just keys; we have data 

• Each bucket is a list (say, linked list) 

• To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element) 

count array 

1 

2 

3 

4 

5 

• Example: Movie ratings; 

scale 1-5;1=bad, 5=excellent 

Input= 

 5: Casablanca 

 3: Harry Potter movies 

 5: Star Wars Original 

Trilogy 

 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars 

•Easy to keep ‘stable’; Casablanca still before Star Wars 
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Radix sort 

• Radix = “the base of a number system” 

– Examples will use 10 because we are used to that 

– In implementations use larger numbers 

• For example, for ASCII strings, might use 128 
 

• Idea: 

– Bucket sort on one digit at a time 

• Number of buckets = radix 

• Starting with least significant digit 

• Keeping sort stable 

– Do one pass per digit 

– Invariant: After k passes (digits), the last k digits are sorted 
 

• Aside: Origins go back to the 1890 U.S. census 
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Example 

Radix = 10 

 

 

 

 

Input:   478 

         537 

     9 

            721 

     3 

   38 

         143 

    67 
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First pass:  

 bucket sort by ones digit  

1

  
721 

2 3 

    3 

143 

4 5 6 7 

537 

  67 

8 

478 

  38 

9 

    9 

0 

Order now: 721 

                   3 

                   143 

                   537 

                     67 

                   478 

                     38 

                       9 

   



Example 
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Second pass:  

 stable bucket sort by tens digit  

      

1

  
721 

2 3 

    3 

143 

4 5 6 7 

537 

  67 

8 

478 

  38 

9 

    9 

0 

Order now:     3 

                   9 

                   721 

        537 

                     38 

        143 

                     67 

                   478 

   

Radix = 10 

Order was: 721 

                   3 

                   143 

                   537 

                     67 

                   478 

                     38 

                       9 

   

1

  

2 

721 

3 

537 

  38 

4 

143 

5 6 

  67 

7 

478 

   

8 9 

     

0 

    3 

    9 



Example 
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Third pass:  

 stable bucket sort by 100s digit  

      

Order now:     3 

                   9 

                     38 

          67 

                   143 

        478 

                   537 

                   721 

   

Radix = 10 

1

  
143 

2 3 4 

478 

5 

537 

6 7 

721 

   

8 9 

     

0 

    3 

    9 

  38 

  67 Order was:     3 

                   9 

                   721 

        537 

                     38 

        143 

                     67 

                   478 

   

1

  

2 

721 

3 

537 

  38 

4 

143 

5 6 

  67 

7 

478 

   

8 9 

     

0 

    3 

    9 



Analysis 

Input size: n 

Number of buckets = Radix: B 

Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 

– Example: Strings of English letters up to length 15 

• Run-time proportional to: 15*(52 + n)  

•  This is less than n log n only if n > 33,000 

• Of course, cross-over point depends on constant factors of 

the implementations 

– And radix sort can have poor locality properties 
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Sorting massive data 

 

• Need sorting algorithms that minimize disk/tape access time: 

– Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 

– Mergesort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 

 

• Mergesort is the basis of massive sorting 

 

• Mergesort can leverage multiple disks 
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Last Slide on Sorting 

• Simple O(n2) sorts can be fastest for small n 

– Selection sort, Insertion sort (latter linear for mostly-sorted) 

– Good for “below a cut-off” to help divide-and-conquer sorts 

• O(n log n) sorts 

– Heap sort, in-place but not stable nor parallelizable 

– Merge sort, not in place but stable and works as external sort 

– Quick sort, in place but not stable and O(n2) in worst-case 

• Often fastest, but depends on costs of comparisons/copies 

•  (n log n) is worst-case and average lower-bound for sorting by 

comparisons 

• Non-comparison sorts 

– Bucket sort good for small number of possible key values 

– Radix sort uses fewer buckets and more phases 

• Best way to sort?  It depends! 
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