
CSE373: Data Structures & Algorithms

Lecture 20: Beyond Comparison Sorting

Dan Grossman

Fall 2013

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Fall 2013 2 CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How Fast Can We Sort?

• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually (n log n)

• So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)

– Instead: we know that this is impossible

• Assuming our comparison model: The only operation an

algorithm can perform on data items is a 2-element

comparison

Fall 2013 3 CSE373: Data Structures & Algorithms

A General View of Sorting

• Assume we have n elements to sort

– For simplicity, assume none are equal (no duplicates)

• How many permutations of the elements (possible orderings)?

• Example, n=3

 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

 a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

• In general, n choices for least element, n-1 for next, n-2 for next, …

– n(n-1)(n-2)…(2)(1) = n! possible orderings

Fall 2013 4 CSE373: Data Structures & Algorithms

Counting Comparisons

• So every sorting algorithm has to “find” the right answer among

the n! possible answers

– Starts “knowing nothing”, “anything is possible”

– Gains information with each comparison

– Intuition: Each comparison can at best eliminate half the

remaining possibilities

– Must narrow answer down to a single possibility

• What we can show:

 Any sorting algorithm must do at least (1/2)nlog n – (1/2)n

 (which is (n log n)) comparisons

– Otherwise there are at least two permutations among the n!

possible that cannot yet be distinguished, so the algorithm

would have to guess and could be wrong [incorrect algorithm]

Fall 2013 5 CSE373: Data Structures & Algorithms

Optional: Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress

without doing comparisons

– Eventually does a first comparison “is a < b ?"

– Can use the result to decide what second comparison to do

– Etc.: comparison k can be chosen based on first k-1 results

• Can represent this process as a decision tree

– Nodes contain “set of remaining possibilities”

• Root: None of the n! options yet eliminated

– Edges are “answers from a comparison”

– The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know

so far” as the algorithm progresses

Fall 2013 6 CSE373: Data Structures & Algorithms

Optional: One Decision Tree for n=3

Fall 2013 7 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

 b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c

• A different algorithm would lead to a different tree

Optional: Example if a < c < b

Fall 2013 8 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

 b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

Optional: What the Decision Tree Tells Us

• A binary tree because each comparison has 2 outcomes

– (We assume no duplicate elements)

– (Would have 1 outcome if algorithm asks redundant questions)

• Because any data is possible, any algorithm needs to ask enough

questions to produce all n! answers

– Each answer is a different leaf

– So the tree must be big enough to have n! leaves

– Running any algorithm on any input will at best correspond to a

root-to-leaf path in some decision tree with n! leaves

– So no algorithm can have worst-case running time better than

the height of a tree with n! leaves

• Worst-case number-of-comparisons for an algorithm is an

input leading to a longest path in algorithm’s decision tree

Fall 2013 9 CSE373: Data Structures & Algorithms

Optional: Where are we

• Proven: No comparison sort can have worst-case running time

better than the height of a binary tree with n! leaves

– A comparison sort could be worse than this height, but it

cannot be better

• Now: a binary tree with n! leaves has height (n log n)

– Height could be more, but cannot be less

– Factorial function grows very quickly

• Conclusion: Comparison sorting is (n log n)

– An amazing computer-science result: proves all the clever

programming in the world cannot comparison-sort in linear

time

Fall 2013 10 CSE373: Data Structures & Algorithms

Optional: Height lower bound

• The height of a binary tree with L leaves is at least log2 L

• So the height of our decision tree, h:

 h log2 (n!) property of binary trees

 = log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

 = log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) drop smaller terms (0)

 log2 (n/2) + log2 (n/2) + … + log2 (n/2) shrink terms to log2 (n/2)

 = (n/2)log2 (n/2) arithmetic

 = (n/2)(log2 n - log2 2) property of logarithms

 = (1/2)nlog2 n – (1/2)n arithmetic

 “=“ (n log n)

Fall 2013 11 CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Fall 2013 12 CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How???

• Change the model – assume

 more than “compare(a,b)”

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers between 1

and K (or any small range):

– Create an array of size K

– Put each element in its proper bucket (a.k.a. bin)

– If data is only integers, no need to store more than a count of

how times that bucket has been used

• Output result via linear pass through array of buckets

Fall 2013 13 CSE373: Data Structures & Algorithms

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

• Overall: O(n+K)

– Linear in n, but also linear in K

– (n log n) lower bound does not apply because this is not a

comparison sort

• Good when K is smaller (or not much larger) than n

– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n

– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Fall 2013 14 CSE373: Data Structures & Algorithms

Bucket Sort with Data

• Most real lists aren’t just keys; we have data

• Each bucket is a list (say, linked list)

• To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

• Example: Movie ratings;

scale 1-5;1=bad, 5=excellent

Input=

 5: Casablanca

 3: Harry Potter movies

 5: Star Wars Original

Trilogy

 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars

•Easy to keep ‘stable’; Casablanca still before Star Wars

Fall 2013 15 CSE373: Data Structures & Algorithms

Radix sort

• Radix = “the base of a number system”

– Examples will use 10 because we are used to that

– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:

– Bucket sort on one digit at a time

• Number of buckets = radix

• Starting with least significant digit

• Keeping sort stable

– Do one pass per digit

– Invariant: After k passes (digits), the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census

Fall 2013 16 CSE373: Data Structures & Algorithms

Example

Radix = 10

Input: 478

 537

 9

 721

 3

 38

 143

 67

Fall 2013 17 CSE373: Data Structures & Algorithms

First pass:

 bucket sort by ones digit

1

721

2 3

 3

143

4 5 6 7

537

 67

8

478

 38

9

 9

0

Order now: 721

 3

 143

 537

 67

 478

 38

 9

Example

Fall 2013 18 CSE373: Data Structures & Algorithms

Second pass:

 stable bucket sort by tens digit

1

721

2 3

 3

143

4 5 6 7

537

 67

8

478

 38

9

 9

0

Order now: 3

 9

 721

 537

 38

 143

 67

 478

Radix = 10

Order was: 721

 3

 143

 537

 67

 478

 38

 9

1

2

721

3

537

 38

4

143

5 6

 67

7

478

8 9

0

 3

 9

Example

Fall 2013 19 CSE373: Data Structures & Algorithms

Third pass:

 stable bucket sort by 100s digit

Order now: 3

 9

 38

 67

 143

 478

 537

 721

Radix = 10

1

143

2 3 4

478

5

537

6 7

721

8 9

0

 3

 9

 38

 67 Order was: 3

 9

 721

 537

 38

 143

 67

 478

1

2

721

3

537

 38

4

143

5 6

 67

7

478

8 9

0

 3

 9

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15

• Run-time proportional to: 15*(52 + n)

• This is less than n log n only if n > 33,000

• Of course, cross-over point depends on constant factors of

the implementations

– And radix sort can have poor locality properties

Fall 2013 20 CSE373: Data Structures & Algorithms

Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:

– Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses

– Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

• Mergesort is the basis of massive sorting

• Mergesort can leverage multiple disks

21 CSE373: Data Structures & Algorithms Fall 2013

Last Slide on Sorting

• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)

– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts

– Heap sort, in-place but not stable nor parallelizable

– Merge sort, not in place but stable and works as external sort

– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies

• (n log n) is worst-case and average lower-bound for sorting by

comparisons

• Non-comparison sorts

– Bucket sort good for small number of possible key values

– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

Fall 2013 22 CSE373: Data Structures & Algorithms

