CSE373: Data Structures \& Algorithms Lecture 22: Parallel Reductions, Maps, and Algorithm Analysis

Dan Grossman

Fall 2013

Outline

Done:

- How to write a parallel algorithm with fork and join
- Why using divide-and-conquer with lots of small tasks is best
- Combines results in parallel
- (Assuming library can handle "lots of small threads")

Now:

- More examples of simple parallel programs that fit the "map" or "reduce" patterns
- Teaser: Beyond maps and reductions
- Asymptotic analysis for fork-join parallelism
- Amdahl's Law

What else looks like this?

- Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large $n!$)
- Exponential speed-up in theory ($n / \log n$ grows exponentially)

- Anything that can use results from two halves and merge them in $O(1)$ time has the same property...

Examples

- Maximum or minimum element
- Is there an element satisfying some property (e.g., is there a 17)?
- Left-most element satisfying some property (e.g., first 17)
- What should the recursive tasks return?
- How should we merge the results?
- Corners of a rectangle containing all points (a "bounding box")
- Counts, for example, number of strings that start with a vowel
- This is just summing with a different base case
- Many problems are!

Reductions

- Computations of this form are called reductions (or reduces?)
- Produce single answer from collection via an associative operator
- Associative: $\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$
- Examples: max, count, leftmost, rightmost, sum, product, ...
- Non-examples: median, subtraction, exponentiation
- But some things are inherently sequential
- How we process arr[i] may depend entirely on the result of processing arr[i-1]

Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
- No combining results
- For arrays, this is so trivial some hardware has direct support
- Canonical example: Vector addition

```
int[] vector add(int[] arr1, int[] arr2) {
    assert (ar\overline{r}1.length == arr2.length);
    result = new int[arrl.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```


In Java

```
class VecAdd extends java.lang.Thread
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ ... }
    protected void run() {
        if(hi - lo < SEQUENTIAL_CUTOFF) {
            for(int i=lo; i < hi;-i++)
                res[i] = arr1[i] + arr2[i];
        } else {
        int mid = (hi+lo)/2;
        VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
        VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
        left.start();
        right.run();
        left.join();
        }
    }
}
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    int[] ans = new int[arr1.length];
    (new VecAdd(0,arr.length,ans,arr1,arr2).run();
    return ans;
}
```


Maps and reductions

Maps and reductions: the "workhorses" of parallel programming

- By far the two most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes "trivial" with a little practice
- Exactly like sequential for-loops seem second-nature

Beyond maps and reductions

- Some problems are "inherently sequential"
"Nine women can't make a baby in one month"
- But not all parallelizable problems are maps and reductions
- If had one more lecture, would show "parallel prefix", a clever algorithm to parallelize the problem that this sequential code solves

input	6	4	16	10	16	14	2	8
output	6	10	26	36	52	66	68	76
	```int[] prefix_sum(int[] input) { int[] outpüt = new int[input.length]; output[0] = input[0]; for(int i=1; i < input.length; i++) output[i] = output[i-1]+input[i]; return output;```							

## Digression: MapReduce on clusters

- You may have heard of Google's "map/reduce"
- Or the open-source version Hadoop
- Idea: Perform maps/reduces on data using many machines
- The system takes care of distributing the data and managing fault tolerance
- You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
- Separating concerns is good software engineering


## Analyzing algorithms

- Like all algorithms, parallel algorithms should be:
- Correct
- Efficient
- For our algorithms so far, correctness is "obvious" so we'll focus on efficiency
- Want asymptotic bounds
- Want to analyze the algorithm without regard to a specific number of processors
- Here: Identify the "best we can do" if the underlying threadscheduler does its part


## Work and Span

Let $\mathbf{T}_{\mathbf{P}}$ be the running time if there are $\mathbf{P}$ processors available

Two key measures of run-time:

- Work: How long it would take 1 processor $=T_{1}$
- Just "sequentialize" the recursive forking
- Span: How long it would take infinity processors $=\mathbf{T}_{\infty}$
- The longest dependence-chain
- Example: $O(\log n)$ for summing an array
- Notice having $>n / 2$ processors is no additional help


## Our simple examples

- Picture showing all the "stuff that happens" during a reduction or a map: it's a (conceptual!) DAG



## Connecting to performance

- Recall: $\mathbf{T}_{\mathbf{P}}=$ running time if there are $\mathbf{P}$ processors available
- Work $=\mathbf{T}_{1}=$ sum of run-time of all nodes in the DAG
- That lonely processor does everything
- Any topological sort is a legal execution
- O(n) for maps and reductions
- $\operatorname{Span}=\mathbf{T}_{\infty}=$ sum of run-time of all nodes on the most-expensive path in the DAG
- Note: costs are on the nodes not the edges
- Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
- $O(\log n)$ for simple maps and reductions


## Speed-up

> Parallel algorithms is about decreasing span without increasing work too much

- Speed-up on $\mathbf{P}$ processors: $\mathbf{T}_{\mathbf{1}} / \mathbf{T}_{\mathbf{P}}$
- Parallelism is the maximum possible speed-up: $\mathbf{T}_{1} / \mathbf{T}_{\infty}$
- At some point, adding processors won't help
- What that point is depends on the span
- In practice we have $\mathbf{P}$ processors. How well can we do?
- We cannot do better than $\mathbf{O}\left(\mathbf{T}_{\infty}\right)$ ("must obey the span")
- We cannot do better than $\boldsymbol{O}\left(\mathbf{T}_{1} / \mathbf{P}\right)$ ("must do all the work")
- Not shown: With a "good thread scheduler", can do this well (within a constant factor of optimal!)


## Examples

$$
\mathrm{T}_{\mathrm{P}}=O\left(\max \left(\left(\mathrm{~T}_{1} / \mathrm{P}\right), \mathrm{T}_{\infty}\right)\right)
$$

- In the algorithms seen so far (e.g., sum an array):
$-\mathrm{T}_{1}=O(n)$
- $\mathbf{T}_{\infty}=O(\log n)$
- So expect (ignoring overheads): $\mathbf{T}_{\mathbf{P}}=\mathbf{O}(\max (n / \mathbf{P}, \log n))$
- Suppose instead:
- $\mathbf{T}_{1}=O\left(n^{2}\right)$
- $\mathbf{T}_{\infty}=O(n)$
- So expect (ignoring overheads): $\mathbf{T}_{\mathbf{P}}=\mathbf{O}\left(\max \left(n^{2} / \mathbf{P}, n\right)\right)$


## Amdahl's Law (mostly bad news)

- So far: analyze parallel programs in terms of work and span
- In practice, typically have parts of programs that parallelize well...
- Such as maps/reductions over arrays
...and parts that don't parallelize at all
- Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.


## Amdahl's Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time
Let $\mathbf{S}$ be the portion of the execution that can't be parallelized
Then:

$$
T_{1}=S+(1-S)=1
$$

Suppose parallel portion parallelizes perfectly (generous assumption)
Then:

$$
T_{P}=S+(1-S) / P
$$

So the overall speedup with $\mathbf{P}$ processors is (Amdahl's Law):

$$
T_{1} / T_{P}=1 /(S+(1-S) / P)
$$

And the parallelism (infinite processors) is:

$$
\mathrm{T}_{1} / \mathrm{T}_{\infty}=1 / \mathrm{S}
$$

## Why such bad news

$$
T_{1} / T_{P}=1 /(S+(1-S) / P) \quad T_{1} / T_{\infty}=1 / S
$$

- Suppose 33\% of a program's execution is sequential
- Then a billion processors won't give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- For 256 processors to get at least 100x speedup, we need

$$
100 \leq 1 /(\mathbf{S}+(1-\mathbf{S}) / 256)
$$

Which means $\mathbf{S} \leq .0061$ (i.e., $99.4 \%$ perfectly parallelizable)

## All is not lost

Amdahl's Law is a bummer!

- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless
- We can find new parallel algorithms
- Some things that seem sequential are actually parallelizable
- We can change the problem or do new things
- Example: Video games use tons of parallel processors
- They are not rendering 10-year-old graphics faster
- They are rendering more beautiful(?) monsters


## Moore and Amdahl



- Moore's "Law" is an observation about the progress of the semiconductor industry
- Transistor density doubles roughly every 18 months
- Amdahl's Law is a mathematical theorem
- Diminishing returns of adding more processors
- Both are incredibly important in designing computer systems

