Today

- Finish discussing stacks and queues

CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Dan Grossman

Fall 2013

- Review math essential to algorithm analysis
- Proof by induction
- Powers of 2
- Binary numbers
- Exponents and logarithms
- Begin analyzing algorithms
- Using asymptotic analysis (continue next time)

Example

$P(n)=$ "the sum of the first n powers of 2 (starting at 0) is $2^{n}-1$ "

Theorem: $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case: $n=1$. Sum of first 1 power of 2 is 2^{0}, which equals 1 .

And for $n=1,2^{n}-1$ equals 1 .

- Inductive case:
- Assume the sum of the first k powers of 2 is $2^{k}-1$
- Show the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$

Using assumption, sum of the first $(k+1)$ powers of 2 is
$\left(2^{k}-1\right)+2^{(k+1)-1}=\left(2^{k}-1\right)+2^{k}=2^{k+1}-1$

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{n}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2^{63-1}

Logarithms and Exponents

- Since so much is binary in CS \log almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=2^{\mathbf{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Fall 2013

CSE373: Data Structures \& Algorithms

Logarithms and Exponents

- Since so much is binary \log in CS almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathrm{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Fall 2013 CSE373: Data Structures \& Algorithms

Logarithms and Exponents

- Since so much is binary log in CS almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=2^{\mathbf{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Fall 2013

Properties of logarithms

Log base doesn't matter much!

- $\log (A * B)=\log A+\log B$
- So $\log \left(N^{k}\right)=k \log N$
- $\log (A / B)=\log A-\log B$
- $\log (\log \mathbf{x})$ is written $\log \log \mathbf{x}$
- Grows as slowly as $2^{2 y}$ grows quickly
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$
- It is not the same as $\log \log x$

Floor and ceiling

Floor and ceiling properties

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n \quad$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows
(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm correctness - does it produce the right answer for all inputs

- Usually more important, naturally

Example

-What does this pseudocode return?
$\mathbf{x}:=0$;
for $i=1$ to N do for $j=1$ to i do $\mathbf{x}:=\mathbf{x}+3$;
return \mathbf{x};

- Correctness: For any $\mathrm{N} \geq 0$, it returns...

Example

- How long does this pseudocode run?
$\mathrm{x}:=0$;
for $i=1$ to N do
for $j=1$ to i do
$\mathbf{x}:=\mathbf{x}+3$;
return \mathbf{x};
- Running time: For any $\mathrm{N} \geq 0$,
- Assignments, additions, returns take " 1 unit time"
- Loops take the sum of the time for their iterations
- So: $2+2$ (number of times inner loop runs)
- And how many times is that...

Example

- How long does this pseudocode run?

```
x := 0;
for i=1 to N do
        for j=1 to i do
            x := x + 3;
return x;
```

- The total number of loop iterations is $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$
- This is a very common loop structure, worth memorizing
- Proof is by induction on N , known for centuries
- This is proportional to N^{2}, and we say $\mathrm{O}\left(\mathrm{N}^{2}\right)$, "big-Oh of"
- For large enough N , the N and constant terms are irrelevant, as are the first assignment and return
- See plot... $N^{*}(N+1) / 2$ vs. just $N^{2} / 2$

Lower-order terms don't matter

$\mathrm{N}^{*}(\mathrm{~N}+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Geometric interpretation

- Area of square: $\mathrm{N}^{*} \mathrm{~N}$
- Area of lower triangle of square: $\mathrm{N}^{*} \mathrm{~N} / 2$
- Extra area from squares crossing the diagonal: $\mathrm{N}^{*} 1 / 2$
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Big-O: Common Names

$O(1)$	constant (same as $O(k)$ for constant k)
$O(\log n)$	logarithmic
$O(n)$	linear
$O(\mathrm{n} \log n)$	"n $\log n "$
$O\left(n^{2}\right)$	quadratic
$O\left(n^{3}\right)$	cubic
$O\left(n^{k}\right)$	polynomial (where is k is any constant)
$O\left(k^{n}\right)$	exponential (where k is any constant > 1)

Pet peeve: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

- A savings account accrues interest exponentially ($k=1.01$?)
- If you don't know k, you probably don't know it's exponential

