

CSE373: Data Structures and Algorithms Lecture 2: Math Review; Algorithm Analysis

Dan Grossman Fall 2013

Today

- Finish discussing stacks and queues
- Review math essential to algorithm analysis
 - Proof by induction
 - Powers of 2
 - Binary numbers
 - Exponents and logarithms
- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

− Example: $n \ge n/2 + 1$

To prove P(n) for all integers $n \ge n_0$, it suffices to prove

1. $P(n_0)$ – called the "basis" or "base case"

2. If P(k), then P(k+1) – called the "induction step" or "inductive case"

Why we will care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

Fall 2013

CSE373: Data Structures & Algorithms

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of *n* bits can represent 2ⁿ distinct things
 For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2^{63} -1

Example

Fall 2013

P(n) = "the sum of the first *n* powers of 2 (starting at 0) is 2ⁿ-1"

CSE373: Data Structures & Algorithms

Theorem: P(n) holds for all $n \ge 1$ Proof: By induction on n

- Base case: *n*=1. Sum of first 1 power of 2 is 2⁰, which equals 1. And for *n*=1, 2ⁿ-1 equals 1.
- · Inductive case:
 - Assume the sum of the first k powers of 2 is 2^{k} -1
 - Show the sum of the first (k+1) powers of 2 is $2^{k+1}-1$ Using assumption, sum of the first (k+1) powers of 2 is
 - $(2^{k}-1) + 2^{(k+1)-1} = (2^{k}-1) + 2^{k} = 2^{k+1}-1$

Fall 2013

CSE373: Data Structures & Algorithms

4

2

Therefore ...

Could give a unique id to...

- · Every person in the U.S. with 29 bits
- · Every person in the world with 33 bits
- · Every person to have ever lived with 38 bits (estimate)
- · Every atom in the universe with 250-300 bits
- So if a password is 128 bits long and randomly generated, do you think you could guess it?

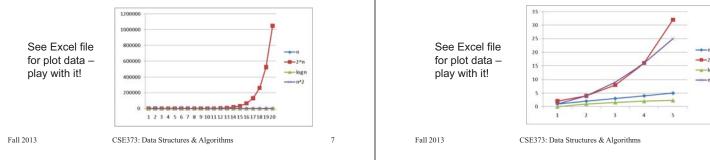
5

3

Fall 2013

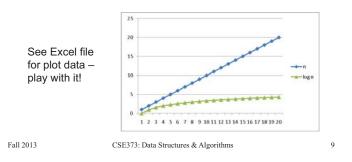
Logarithms and Exponents

- Since so much is binary in CS log almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

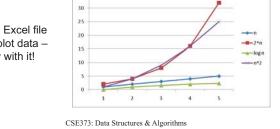


Properties of logarithms

- log(A*B) = log A + log B- So $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- log(log x) is written log log x - Grows as slowly as 22^y grows quickly
- (log x) (log x) is written log^2x - It is greater than log x for all x > 2 - It is not the same as log log x

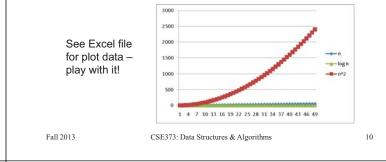
Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



Log base doesn't matter much!

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 x = 3.22 \log_{10} x$
- In general,

```
\log_{B} x = (\log_{A} x) / (\log_{A} B)
```

 [X] Foor function: the largest integer ≤ X [Z7] = 2 [-2.7] = 3 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X [Z3] = 3 [-2.3] = -2 [2] = 2 [X] Celling function: the smallest integer ≥ X 	Floor and ceiling	Floor and ceiling properties
<page-header> Martin Martin Martin Signal (1) Martin Martin Martin Signal (1) (2) <td< td=""><td>$\lfloor 2.7 \rfloor = 2$ $\lfloor -2.7 \rfloor = -3$ $\lfloor 2 \rfloor = 2$ $\lceil X \rceil$ Ceiling function: the smallest integer $\ge X$</td><td>$2. X \leq \left\lceil X \right\rceil < X + 1$</td></td<></page-header>	$\lfloor 2.7 \rfloor = 2$ $\lfloor -2.7 \rfloor = -3$ $\lfloor 2 \rfloor = 2$ $\lceil X \rceil$ Ceiling function: the smallest integer $\ge X$	$2. X \leq \left\lceil X \right\rceil < X + 1$
As the "size" of an algorithm is input grows (integer, length of array, size of queue, etc.): - How much more memory does the algorithm take (time) - How much more memory does the algorithm need (space) Because the curves we saw are so different, often care about only "which curve we are like" Separate issue: Algorithm <i>correctness</i> – does it produce the right answer for all inputs - Usually more important, naturally Fall 2013 CMETRY Data Structures & Algorithm • What does this pseudocode return? $\frac{x}{x} := 0;$ for $x := 1 + 0$ % 0, it returns Fall 2013 CMETRY Data Structures & Algorithm • Usually more important, naturally Fall 2013 CMETRY Data Structures & Algorithm • Usually more important, naturally Fall 2013 CMETRY Data Structures & Algorithm • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0, it returns $3N(N+1)/2$ • Base: n=0, returns 0 • Inductive: From $P/(2)$, sholds $3k(k+1)/2 + 3k(k+1)$ = ($3k(k+1)/2 = (k+1)/(3k+6)/2 = 3(k+1)/(k+2)/2$		Fall 2013 CSE373: Data Structures & Algorithms 14
Example• What does this pseudocode return? $x := 0;$ for i=1 to N do for j=1 to i do $x := x + 3;$ return x;• Correctness: For any N ≥ 0 , it returns $3N(N+1)/2$ • Correctness: For any N ≥ 0 , it returns $3N(N+1)/2$ • Proof: By induction on n $- P(n) = after outer for-loop executes n times, x holds3n(n+1)/2• Base: n=0, return 0- Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2• Mow long does this pseudocode run?x := 0;for i=1 to N dofor j=1 to i dox := x + 3;return x;• Correctness: For any N \geq 0,- Assignments, additions, returns take "1 unit time"- Loops take the sum of the time for their iterations- And how many times is that$	 As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.): How much longer does the algorithm take (time) How much more memory does the algorithm need (space) Because the curves we saw are so different, often care about only "which curve we are like" Separate issue: Algorithm <i>correctness</i> – does it produce the right answer for all inputs 	<pre>• What does this pseudocode return? x := 0; for i=1 to N do for j=1 to i do x := x + 3; return x;</pre>
• What does this pseudocode return? $\mathbf{x} := 0;$ for i=1 to N do for j=1 to i do $\mathbf{x} := \mathbf{x} + 3;$ return x; • Correctness: For any N ≥ 0 , it returns $3N(N+1)/2$ • Proof: By induction on n $-P(n) = \text{after outer for-loop executes } n \text{ times, } \mathbf{x} \text{ holds}$ 3n(n+1)/2 • Base: n=0, returns 0 $- \text{ Inductive: From } P(k), \mathbf{x} \text{ holds } 3k(k+1)/2 \text{ after } k \text{ iterations.}$ Next iteration adds $3(k+1)$, for total of $3k(k+1)/2 + 3(k+1)$ = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2	Fall 2013 CSE373: Data Structures & Algorithms 15	Fall 2013 CSE373: Data Structures & Algorithms 16
Fall 2013 CSE373: Data Structures & Algorithms 17 Fall 2013 CSE373: Data Structures & Algorithms 18	 What does this pseudocode return? x := 0; for i=1 to N do for j=1 to i do x := x + 3; return x; Correctness: For any N ≥ 0, it returns 3N(N+1)/2 Proof: By induction on n P(n) = after outer for-loop executes n times, x holds 3n(n+1)/2 Base: n=0, returns 0 Inductive: From P(k), x holds 3k(k+1)/2 after k iterations. Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1) 	 How long does this pseudocode run? x := 0; for i=1 to N do for j=1 to i do x := x + 3; return x; Running time: For any N ≥ 0, - Assignments, additions, returns take "1 unit time" - Loops take the sum of the time for their iterations So: 2 + 2*(number of times inner loop runs)
	Fall 2013 CSE373: Data Structures & Algorithms 17	Fall 2013 CSE373: Data Structures & Algorithms 18

Example

How long does this pseudocode run? x := 0;

for i=1 to N do for j=1 to i do x := x + 3; return x;

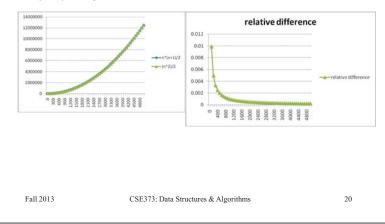
- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - Proof is by induction on N, known for centuries
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - · For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

Fall 2013

CSE373: Data Structures & Algorithms

Lower-order terms don't matter

N*(N+1)/2 vs. just N2/2

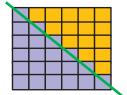


Big-O: Common Names

O(1)	constant (same as $O(k)$ for constant k)	
$O(\log n)$	logarithmic	
O(n)	linear	
O(n log n)	"n log <i>n</i> "	
O(n ²)	quadratic	
<i>O</i> (<i>n</i> ³)	cubic	
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)	
$O(k^n)$	exponential (where k is any constant > 1)	
Pet peeve: "exponential" does not mean "grows really fast", it means "grows at rate proportional to <i>k</i> ⁿ for some <i>k</i> >1"		
 A savings account accrues interest exponentially (k=1.01?) 		
 If you don't know k, you probably don't know it's exponential 		
Fall 2013	CSE373: Data Structures & Algorithms	22

∑ i=1 i

= N*N/2+N/2



- Area of square: N*N •
- Area of lower triangle of square: N*N/2 •

Geometric interpretation

- Extra area from squares crossing the diagonal: N*1/2 •
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Fall 2013

CSE373: Data Structures & Algorithms

21

19