CSE373: Data Structures \& Algorithms
Lecture 4: Dictionaries; Binary Search Trees

Dan Grossman

Fall 2013

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty,...
2. Queue: enqueue, dequeue, isEmpty, ...

Next:
3. Dictionary (a.k.a. Map): associate keys with values

- Extremely common

The Dictionary (a.k.a. Map) ADT

- Data:
- set of (key, value) pairs
- keys must be comparable
djg
Dan
Grossman
- Operations:
- insert(key,value)
- find(key)
- delete (key)
- ...

Will tend to emphasize the keys; don't forget about the stored values
ljames
Lebron
James
miley
Miley
Cyrus

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values

- A key is present or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold

- union, intersection, is_subset
- Notice these are binary operators on sets

Dictionary data structures

There are many good data structures for (large) dictionaries

1. AVL trees

- Binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables

- Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)
But first some applications and less efficient implementations...

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

- Lots of programs do that!
- Search:
- Networks:
- Operating systems:
- Compilers:
- Databases:
- Biology:
inverted indexes, phone directories, ... router tables
page tables
symbol tables
dictionaries with other nice properties genome maps

Simple implementations

For dictionary with n key/value pairs
insert find delete

- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Simple implementations

For dictionary with n key/value pairs

insert	find	delete
$O(1)^{*}$	$O(n)$	$O(n)$

- Unsorted array
$O(1)^{*}$
$O(n)$
$O(n)$
- Sorted linked list
$O(n)$
$O(n)$
$O(n)$
- Sorted array
$O(n) \quad O(\log n) \quad O(n)$
* Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Lazy Deletion

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{5 0}$
\checkmark	\mathbf{x}	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{x}	\checkmark	\checkmark

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where m is data-structure size (okay)
- May complicate other operations

Tree terms (review?)

Some tree terms (mostly review)

- There are many kinds of trees
- Every binary tree is a tree
- Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
- Every binary search tree is a binary tree
- Later: A binary heap is a different kind of binary tree
- A tree can be balanced or not
- A balanced tree with n nodes has a height of $O(\log n)$
- Different tree data structures have different "balance conditions" to achieve this

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children (branching factor 2)
- n-ary tree: Each node has at most n children (branching factor n)
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

Binary Trees

- Binary tree is empty or
- A root (with data)
- A left subtree (may be empty)
- A right subtree (may be empty)
- Representation:

Data	
left pointer	right pointer

- For a dictionary, data will include a key and a value

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

- max \# of leaves:

$$
2^{h}
$$

- max \# of nodes: $\quad 2^{(h+1)}=1$
- min \# of leaves:

1
$-\min \#$ of nodes: $\quad \boldsymbol{h}+\boldsymbol{1}$

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height

Calculating height

What is the height of a tree with root root?
int treeHeight(Node root) \{
???
\}

Calculating height

What is the height of a tree with root root?

```
int treeHeight(Node root) {
    if(root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
    treeHeight(root.right));
}
```

Running time for tree with n nodes: $O(n)$ - single pass over tree
Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree
- In-order. left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

(an expression tree)

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
+*245
- In-order. left subtree, root, right subtree

$$
2 * 4+5
$$

- Post-order: left subtree, right subtree, root

$$
24 \text { * } 5+
$$

(an expression tree)

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

Sometimes order doesn't matter

- Example: sum all elements

Sometimes order matters

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

A
B
D
E
C
F
G

Binary Search Tree

- Structure property ("binary")
- Each node has ≤ 2 children
- Result: keeps operations simple
- Order property
- All keys in left subtree smaller than node's key
- All keys in right subtree larger than node's key
- Result: easy to find any given key

Are these BSTs?

Are these BSTs?

Find in BST, Recursive


```
Data find(Key key, Node root) {
    if(root == null)
        return null;
    if(key < root.key)
            return find(key,root.left);
    if(key > root.key)
            return find(key,root.right);
    return root.data;
}
```


Find in BST, Iterative


```
Data find(Key key, Node root) {
    while(root != null
                        && root.key != key) {
        if(key < root.key)
            root = root.left;
        else(key > root.key)
            root = root.right;
    }
    if(root == null)
        return null;
    return root.data;
}
```


Other "Finding" Operations

- Find minimum node
- "the liberal algorithm"
- Find maximum node
- "the conservative algorithm"
- Find predecessor of a non-leaf
- Find successor of a non-leaf
- Find predecessor of a leaf
- Find successor of a leaf

Insert in BST

insert(13)
insert(8)
insert(31)
(New) insertions happen only at leaves - easy!

Deletion in BST

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure
- Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three cases:
- Node has no children (leaf)
- Node has one child
- Node has two children

Deletion - The Leaf Case

Deletion - The One Child Case

Deletion - The Two Child Case

What can we replace 5 with?

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!

Lazy Deletion

- Lazy deletion can work well for a BST
- Simpler
- Can do "real deletions" later as a batch
- Some inserts can just "undelete" a tree node
- But
- Can waste space and slow down find operations
- Make some operations more complicated:
- How would you change findMin and findMax?

Build Tree for BST

- Let's consider buildTree
- Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?

$$
O\left(n^{2}\right)
$$

Not a happy place

- Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
$-5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?

O(n log n), definitely better

Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is $O(n)$ and nobody is happy
- find
- insert
- delete

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
- Average height is $O(\log n)$ - see text for proof
- Worst case height is $O(n)$
- Simple cases, such as inserting in key order, lead to the worst-case scenario

Solution: Require a Balance Condition that

1. Ensures depth is always $O(\log n) \quad$ - strong enough!
2. Is efficient to maintain

- not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

Too weak!

Height mismatch example:

2. Left and right subtrees of the root have equal height

Too weak!
 Double chain example:

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
Too strong!
Only perfect trees $\left(2^{n}-1\right.$ nodes $)$

4. Left and right subtrees of every node have equal height

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) - height(node.right)

AVL property: for every node $x,-1 \leq$ balance $(x) \leq 1$

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Efficient to maintain
- Using single and double rotations

