

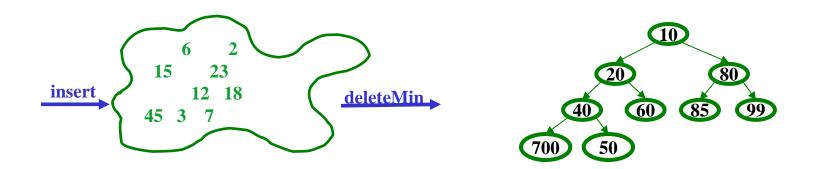


# CSE373: Data Structures & Algorithms

Lecture 7: Binary Heaps, Continued

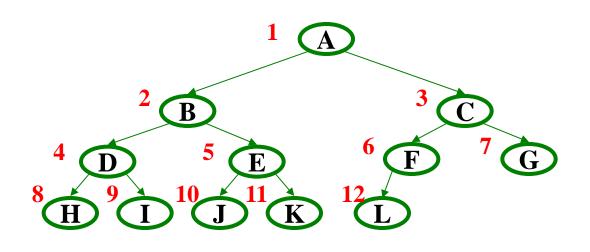
Dan Grossman Fall 2013

#### Review



- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- $O(\text{height-of-tree}) = O(\log n)$  insert and deleteMin operations
  - insert: put at new last position in tree and percolate-up
  - deleteMin: remove root, put last element at root and percolate-down
- But: tracking the "last position" is painful and we can do better

# Array Representation of Binary Trees



From node i:

left child: i\*2

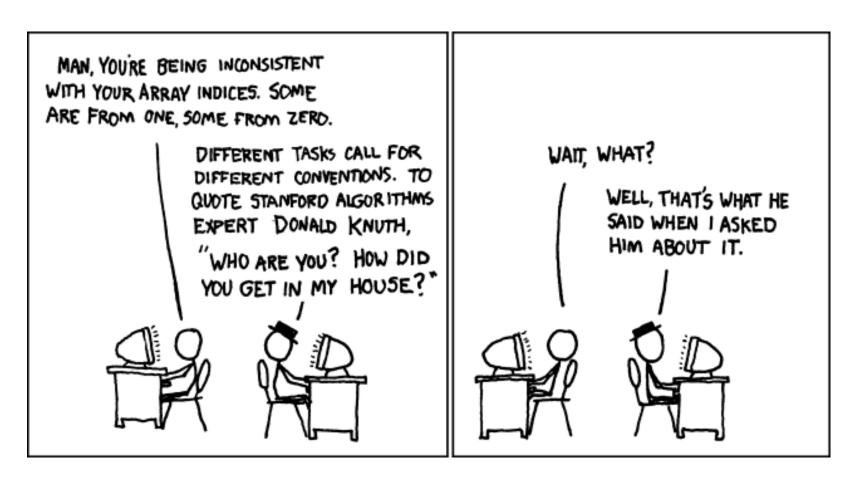
right child: i\*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

|   | A | В | C | D | E | F | G | Н | Ι | J  | K  | L  |    |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



http://xkcd.com/163

# Judging the array implementation

#### Plusses:

- Non-data space: just index 0 and unused space on right
  - In conventional tree representation, one edge per node (except for root), so n-1 wasted space (like linked lists)
  - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

#### Minuses:

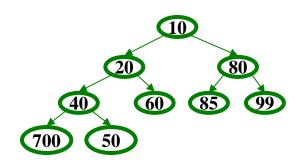
 Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

#### Pseudocode: insert

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
void insert(int val) {
  if(size==arr.length-1)
    resize();
  size++;
  i=percolateUp(size,val);
  arr[i] = val;
}
```

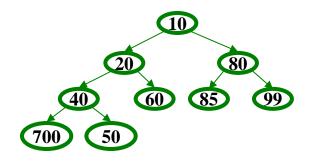


|   | 10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50 |    |    |    |    |
|---|----|----|----|----|----|----|----|-----|----|----|----|----|----|
| 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8   | 9  | 10 | 11 | 12 | 13 |

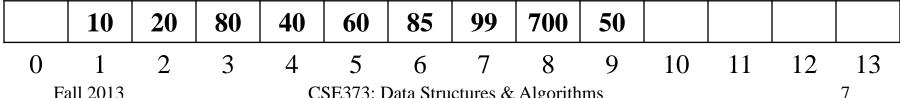
### Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
int deleteMin() {
  if(isEmpty()) throw...
  ans = arr[1];
  hole = percolateDown
           (1,arr[size]);
  arr[hole] = arr[size];
  size--;
  return ans;
```

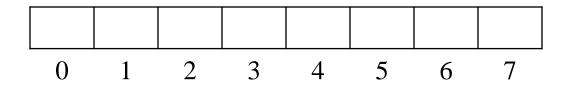


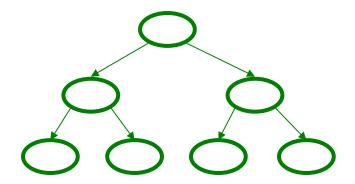
```
int percolateDown(int hole,
                    int val) {
while(2*hole <= size) {</pre>
  left = 2*hole;
  right = left + 1;
  if(arr[left] < arr[right]</pre>
     || right > size)
    target = left;
  else
    target = right;
  if(arr[target] < val) {</pre>
    arr[hole] = arr[target];
    hole = target;
  } else
      break;
 return hole;
```



1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin





# Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by *p* 
  - Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
  - Change priority and percolate down
- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
  - decreaseKey with  $p = \infty$ , then deleteMin

Running time for all these operations?

# Build Heap

- Suppose you have n items to put in a new (empty) priority queue
  - Call this operation buildHeap
- n inserts works
  - Only choice if ADT doesn't provide buildHeap explicitly
  - $O(n \log n)$
- Why would an ADT provide this unnecessary operation?
  - Convenience
  - Efficiency: an O(n) algorithm called Floyd's Method
  - Common issue in ADT design: how many specialized operations

# Floyd's Method

- 1. Use *n* items to make any complete tree you want
  - That is, put them in array indices 1,...,n
- 2. Treat it as a heap and fix the heap-order property
  - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

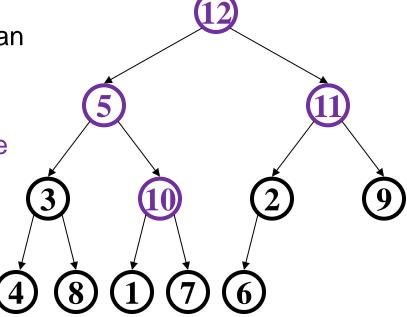
In tree form for readability

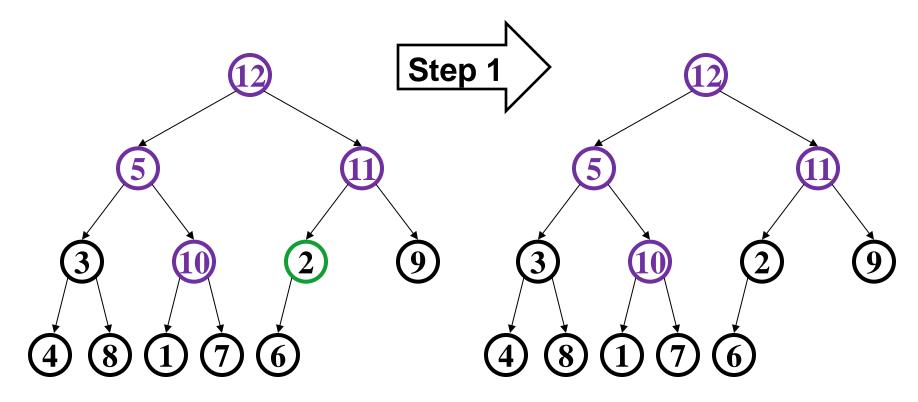
Purple for node not less than descendants

heap-order problem

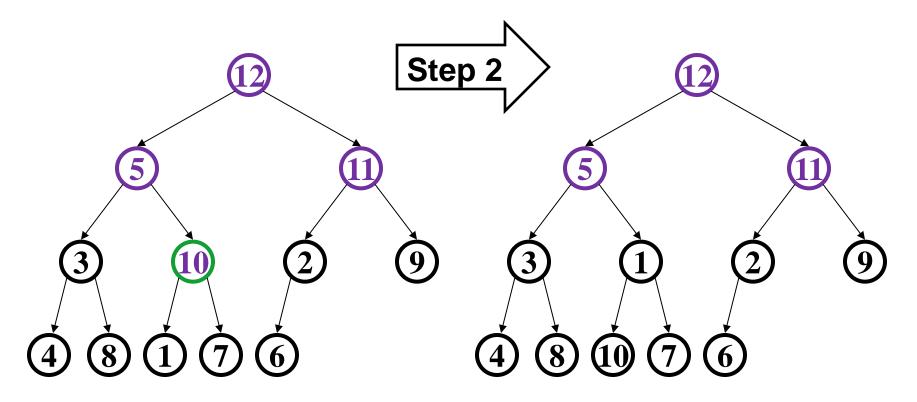
Notice no leaves are purple

 Check/fix each non-leaf bottom-up (6 steps here)

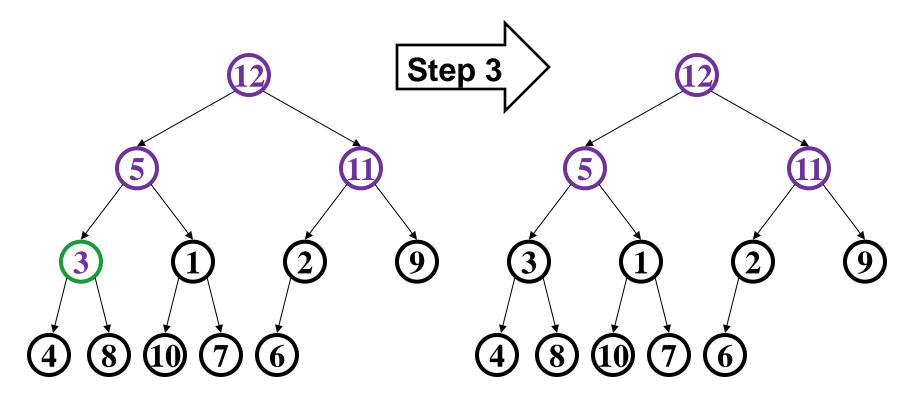




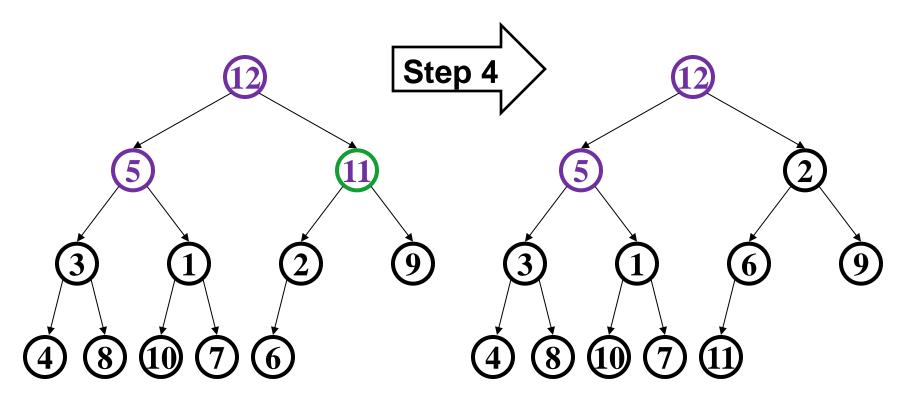
Happens to already be less than children (er, child)



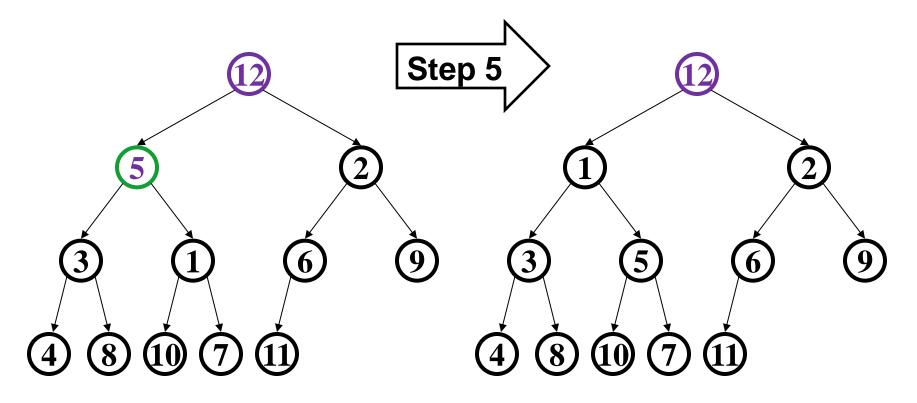
Percolate down (notice that moves 1 up)

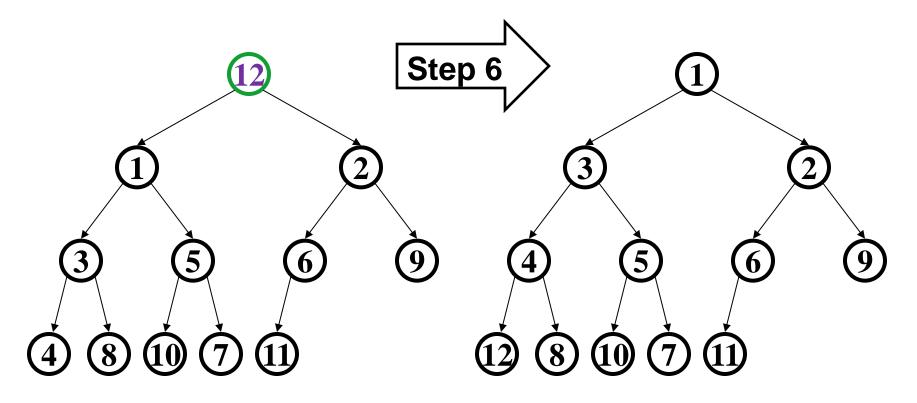


Another nothing-to-do step



Percolate down as necessary (steps 4a and 4b)





# But is it right?

- "Seems to work"
  - Let's prove it restores the heap property (correctness)
  - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

#### Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
  - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown
  make arr[i] less than children without breaking the property
  for any descendants

So after the loop finishes, all nodes are less than their children

# **Efficiency**

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Easy argument: buildHeap is  $O(n \log n)$  where n is size

- size/2 loop iterations
- Each iteration does one **percolateDown**, each is  $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

## **Efficiency**

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Better argument: buildHeap is O(n) where n is size

- size/2 total loop iterations: O(n)
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- •
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
  - So at most 2 (size/2) total percolate steps: O(n)

### Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in O(n log n) worst case
  - Worst case is inserting lower priority values later
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do O(n) worst case
  - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
  - Correctness:
    - Non-trivial inductive proof using loop invariant
  - Efficiency:
    - First analysis easily proved it was O(n log n)
    - Tighter analysis shows same algorithm is O(n)

# Other branching factors

- d-heaps: have d children instead of 2
  - Makes heaps shallower, useful for heaps too big for memory (or cache)
- Homework: Implement a 3-heap
  - Just have three children instead of 2
  - Still use an array with all positions from 1...heap-size used

| Index | Children Indices |
|-------|------------------|
| 1     | 2,3,4            |
| 2     | 5,6,7            |
| 3     | 8,9,10           |
| 4     | 11,12,13         |
| 5     | 14,15,16         |
|       |                  |

# What we are skipping

- merge: given two priority queues, make one priority queue
  - How might you merge binary heaps:
    - If one heap is much smaller than the other?
    - If both are about the same size?
  - Different pointer-based data structures for priority queues support logarithmic time merge operation (impossible with binary heaps)
    - Leftist heaps, skew heaps, binomial queues
    - Worse constant factors
    - Trade-offs!