
CSE373: Data Structures & Algorithms 
Lecture 8: Amortized Analysis 

Dan Grossman 
Fall 2013 

Amortized  

• Recall our plain-old stack implemented as an array that doubles its 
size if it runs out of room 
– How can we claim push is O(1) time if resizing is O(n) time? 
– We can’t, but we can claim it’s an O(1) amortized operation 

 

• What does amortized mean? 
• When are amortized bounds good enough? 
• How can we prove an amortized bound? 

 
 

Will just do two simple examples  
– Text has more sophisticated examples and proof techniques 
– Idea of how amortized describes average cost is essential 

Fall 2013 2 CSE373: Data Structures & Algorithms 

Amortized Complexity 

If a sequence of M operations takes O(M  f(n)) time,  
we say the amortized runtime is O(f(n)) 

 

Amortized bound: worst-case guarantee over sequences of operations 
– Example: If any n operations take O(n), then amortized O(1) 
– Example: If any n operations take O(n3), then amortized O(n2) 

 
• The worst case time per operation can be larger than f(n) 

– As long as the worst case is always “rare enough” in any 
sequence of operations 
 

 

Amortized guarantee ensures the average time per operation for any 
sequence is O(f(n)) 

 

 Fall 2013 3 CSE373: Data Structures & Algorithms 

“Building Up Credit” 

• Can think of preceding “cheap” operations as building up “credit” 
that can be used to “pay for” later “expensive” operations 
 

• Because any sequence of operations must be under the bound, 
enough “cheap” operations must come first 
– Else a prefix of the sequence, which is also a sequence, 

would violate the bound 

Fall 2013 4 CSE373: Data Structures & Algorithms 

Example #1: Resizing stack 

A stack implemented with an array where we double the size of the 
array if it becomes full 
 

Claim: Any sequence of push/pop/isEmpty is amortized O(1) 
 
Need to show any sequence of M operations takes time O(M) 

– Recall the non-resizing work is O(M) (i.e., M*O(1)) 
– The resizing work is proportional to the total number of element 

copies we do for the resizing 
– So it suffices to show that: 

 After M operations, we have done < 2M total element copies 
    (So average number of copies per operation is bounded by a 

constant) 

Fall 2013 5 CSE373: Data Structures & Algorithms 

Amount of copying 

After  M operations, we have done  < 2M  total element copies 
 

Let n be the size of the array after M operations 
– Then we have done a total of: 

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n 
 element copies 
– Because we must have done at least enough push 

operations to cause resizing up to size n: 
 M �� n/2 

– So 
2M � n > number of element copies 

 
 Fall 2013 6 CSE373: Data Structures & Algorithms 



Other approaches 

• If array grows by a constant amount (say 1000),  
 operations are not amortized O(1) 

– After O(M) operations, you may have done �(M2) copies 
 

• If array shrinks when 1/2 empty,  
 operations are not amortized O(1) 

– Terrible case: pop once and shrink, push once and grow, pop 
once and shrink, … 
 

• If array shrinks when 3/4 empty,  
 it is amortized O(1) 

– Proof is more complicated, but basic idea remains: by the time 
an expensive operation occurs, many cheap ones occurred 
 

Fall 2013 7 CSE373: Data Structures & Algorithms 

Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Fall 2013 8 CSE373: Data Structures & Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 

 
 
 

 
C 
B 
A 

in out 

enqueue: A, B, C 

Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Fall 2013 9 CSE373: Data Structures & Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 

 
 
 

in out 

dequeue 

 
 
B 
C 

 
 
A 

Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Fall 2013 10 CSE373: Data Structures & Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 

 
 
 

in out 

enqueue D, E 

 
 
B 
C 

 
 
A 

 
 
E 
D 

Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Fall 2013 11 CSE373: Data Structures & Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 

 
 
 

in out 

dequeue twice 

 
 

 
 
C B A 

 
 
E 
D 

Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Fall 2013 12 CSE373: Data Structures & Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 

 
 
 

in out 

dequeue again 

 
 

 
 
D C B A 

 
 

 
 
 
E 



Correctness and usefulness 

• If x is enqueued before y, then x will be popped from in later 
than y and therefore popped from out sooner than y 
– So it is a queue 

 
• Example:  

– Wouldn’t it be nice to have a queue of t-shirts to wear 
instead of a stack (like in your dresser)? 

– So have two stacks 
• in: stack of t-shirts go after you wash them 
• out: stack of t-shirts to wear 
• if out is empty, reverse in into out 

Fall 2013 13 CSE373: Data Structures & Algorithms 

Analysis 

• dequeue is not O(1) worst-case because out might be empty 
and in may have lots of items 
 

• But if the stack operations are (amortized) O(1), then any 
sequence of queue operations is amortized O(1) 
 
– The total amount of work done per element is 1 push onto 

in, 1 pop off of in, 1 push onto out, 1 pop off of out 
 

– When you reverse n elements, there were n earlier O(1) 
enqueue operations to average with 

Fall 2013 14 CSE373: Data Structures & Algorithms 

Amortized useful? 

• When the average per operation is all we care about (i.e., sum 
over all operations), amortized is perfectly fine 
– This is the usual situation 

 
• If we need every operation to finish quickly (e.g., in a web 

server), amortized bounds may be too weak 
 

• While amortized analysis is about averages, we are averaging 
cost-per-operation on worst-case input 
– Contrast: Average-case analysis is about averages across 

possible inputs.  Example: if all initial permutations of an 
array are equally likely, then quicksort is O(n log n) on 
average even though on some inputs it is O(n2)) 

Fall 2013 15 CSE373: Data Structures & Algorithms 

Not always so simple 

• Proofs for amortized bounds can be much more complicated 
 

• Example: Splay trees are dictionaries with amortized O(log n) 
operations 
– No extra height field like AVL trees 
– See Chapter 4.5 if curious 

 

• For more complicated examples, the proofs need much more 
sophisticated invariants and “potential functions” to describe 
how earlier cheap operations build up “energy” or “money” to 
“pay for” later expensive operations 
– See Chapter 11 if curious 

 

• But complicated proofs have nothing to do with the code! 

Fall 2013 16 CSE373: Data Structures & Algorithms 


