CSE373: Data Structures \& Algorithms Lecture 9: Disjoint Sets \& Union-Find

Dan Grossman

Fall 2013

The plan

- What are disjoint sets
- And how are they "the same thing" as equivalence relations
- The union-find ADT for disjoint sets
- Applications of union-find

Next lecture:

- Basic implementation of the ADT with "up trees"
- Optimizations that make the implementation much faster

Disjoint sets

- A set is a collection of elements (no-repeats)
- Two sets are disjoint if they have no elements in common
$-S_{1} \cap S_{2}=\varnothing$
- Example: $\{\mathrm{a}, \mathrm{e}, \mathrm{c}\}$ and $\{\mathrm{d}, \mathrm{b}\}$ are disjoint
- Example: $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\{\mathrm{t}, \mathrm{u}, \mathrm{x}\}$ are not disjoint

Partitions

A partition P of a set S is a set of sets $\{S 1, S 2, \ldots, S n\}$ such that every element of S is in exactly one $S i$

Put another way:
$-\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{k}}=\mathrm{S}$

- $\mathrm{i} \neq \mathrm{j}$ implies $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ (sets are disjoint with each other)

Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: $\{a\},\{d, e\},\{b, c\}$
- Another partition: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \varnothing,\{\mathrm{d}\},\{\mathrm{e}\}$
- A third: $\{a, b, c, d, e\}$
- Not a partition: \{a,b,d\}, \{c,d,e\}
- Not a partition of $S:\{a, b\},\{\mathrm{e}, \mathrm{c}\}$

Binary relations

- $S \times S$ is the set of all pairs of elements of S
- Example: If $S=\{a, b, c\}$
then $S \times S=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
- A binary relation R on a set S is any subset of $S \times S$
- Write $R(\mathrm{x}, \mathrm{y})$ to mean (x, y) is "in the relation"
- (Unary, ternary, quaternary, ... relations defined similarly)
- Examples for $S=$ people-in-this-room
- Sitting-next-to-each-other relation
- First-sitting-right-of-second relation
- Went-to-same-high-school relation
- Same-gender-relation
- First-is-younger-than-second relation

Properties of binary relations

- A binary relation R over set S is reflexive means

$$
R(\mathrm{a}, \mathrm{a}) \text { for all } \mathrm{a} \text { in } S
$$

- A binary relation R over set S is symmetric means

$$
R(\mathrm{a}, \mathrm{~b}) \text { if and only if } R(\mathrm{~b}, \mathrm{a}) \text { for all } \mathrm{a}, \mathrm{~b} \text { in } S
$$

- A binary relation R over set S is transitive means

If $R(\mathrm{a}, \mathrm{b})$ and $R(\mathrm{~b}, \mathrm{c})$ then $R(\mathrm{a}, \mathrm{c})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in S

- Examples for $S=$ people-in-this-room
- Sitting-next-to-each-other relation
- First-sitting-right-of-second relation
- Went-to-same-high-school relation
- Same-gender-relation
- First-is-younger-than-second relation

Equivalence relations

- A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive
- Examples
- Same gender
- Connected roads in the world
- Graduated from same high school?

Punch-line

- Every partition induces an equivalence relation
- Every equivalence relation induces a partition
- Suppose $P=\{S 1, S 2, \ldots, S n\}$ be a partition
- Define $R(\mathrm{x}, \mathrm{y})$ to mean x and y are in the same $S i$
- R is an equivalence relation
- Suppose R is an equivalence relation over S
- Consider a set of sets S1,S2, ..,Sn where
(1) x and y are in the same $S i$ if and only if $R(x, y)$
(2) Every x is in some Si
- This set of sets is a partition

Example

- Let S be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
- One partition: \{a,b,c\}, \{d\}, \{e\}
- The corresponding equivalence relation:
$(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(c, a),(b, c),(c, b),(d, d),(e, e)$

The plan

- What are disjoint sets
- And how are they "the same thing" as equivalence relations
- The union-find ADT for disjoint sets
- Applications of union-find

Next lecture:

- Basic implementation of the ADT with "up trees"
- Optimizations that make the implementation much faster

The operations

- Given an unchanging set S, create an initial partition of a set
- Typically each item in its own subset: $\{a\},\{b\},\{c\}, \ldots$
- Give each subset a "name" by choosing a representative element
- Operation find takes an element of S and returns the representative element of the subset it is in
- Operation union takes two subsets and (permanently) makes one larger subset
- A different partition with one fewer set
- Affects result of subsequent find operations
- Choice of representative element up to implementation

Example

- Let $S=\{1,2,3,4,5,6,7,8,9\}$
- Let initial partition be (will highlight representative elements red)
$\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\}$
- union(2,5):
$\{1\},\{\underline{2}, 5\},\{\underline{3}\},\{4\},\{\underline{6}\},\{\underline{7}\},\{\underline{8}\},\{\underline{9}\}$
- $\operatorname{find}(4)=4$, find(2) $=2$, find(5) $=2$
- union(4,6), union(2,7)

$$
\{1\},\{\underline{2}, 5,7\},\{\underline{3}\},\{4, \underline{6}\},\{\underline{8}\},\{\underline{9}\}
$$

- $\operatorname{find}(4)=6$, find(2) $=2, \operatorname{find}(5)=2$
- union(2,6)

$$
\{\underline{1}\},\{\underline{2}, 4,5,6,7\},\{\underline{3}\},\{\underline{8}\},\{\underline{9}\}
$$

No other operations

- All that can "happen" is sets get unioned
- No "un-union" or "create new set" or ...
- As always: trade-offs - implementations will exploit this small ADT
- Surprisingly useful ADT: list of applications after one example surprising one
- But not as common as dictionaries or priority queues

Example application: maze-building

- Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
- Including "start" to "finish"
- No loops possible without backtracking
- After a "bad turn" have to "undo"

Maze building

Pick start edge and end edge

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish

Problems with this approach

1. How can you tell when there is a path from start to finish?

- We do not really have an algorithm yet

2. We have cycles, which a "good" maze avoids

- Want one solution and no cycles

End

Revised approach

- Consider edges in random order
- But only delete them if they introduce no cycles (how? TBD)
- When done, will have one way to get from any place to any other place (assuming no backtracking)

- Notice the funny-looking tree in red

Cells and edges

- Let's number each cell
- 36 total for 6×6
- An (internal) edge (x, y) is the line between cells x and y
- 60 total for $6 x 6$: $(1,2),(2,3), \ldots,(1,7),(2,8), \ldots$

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | End

The trick

- Partition the cells into disjoint sets: "are they connected"
- Initially every cell is in its own subset
- If an edge would connect two different subsets:
- then remove the edge and union the subsets
- else leave the edge because removing it makes a cycle

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 |

Start 1	2	3	4	5	6
\qquad7 8 9 10 11	12				
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
End End					

The algorithm

- $P=$ disjoint sets of connected cells, initially each cell in its own

1-element set

- $E=$ set of edges not yet processed, initially all (internal) edges
- $M=$ set of edges kept in maze (initially empty)
while P has more than one set \{
- Pick a random edge (x, y) to remove from E
- $u=$ find (x)
$-\mathrm{v}=\mathrm{find}(\mathrm{y})$
- if $u==v$
then add (x, y) to $\mathrm{M} / /$ same subset, do not create cycle else union(u, v) // do not put edge in M, connect subsets
\}
Add remaining members of E to M , then output M as the maze

Example step

Pick $(8,14)$

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 |

Example step

P
$\{1,2,7,8,9,13,19\}$
$\{3\}$
$\{4\}$
$\{5\}$
$\{6\}$
$\{10\}$
$\{11,17\}$
$\{12\}$
$\{14,20,26,27\}$
$\{15, \underline{10}, 21\}$
$\{18\}$
$\{25\}$
$\{23\}$
$\{31\}$
$\{22,23,24,29,30,32$
$33, \underline{34}, 35,36\}$

```
Find(8) = 7
Find(14) = 20
P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{\underline{6}
Union(7,20) {11,17}
```



```
\{12\}
\(\{15,16,21\}\)
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32 33,34,35,36\}
```


Add edge to M step

At the end

- Stop when P has one set
- Suppose green edges are already in M and black edges were not yet picked
- Add all black edges to M

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | End

$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$

Other applications

- Maze-building is:
- Cute
- Homework 4 -
- A surprising use of the union-find ADT
- Many other uses (which is why an ADT taught in CSE373):
- Road/network/graph connectivity (will see this again)
- "connected components" e.g., in social network
- Partition an image by connected-pixels-of-similar-color
- Type inference in programming languages
- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements

