CSE 373 FINAL Review List
Two Two-Sided 8.5 by 11.0 Crib Sheets Allowed

1. Complexity
e Be able to analyze and compare the time complexities of various algorithms using
Big-O notation.
e Be able to determine which is the best structure (from a list) for a given applica-
tion.

2. Lists, Stacks, and Queues

e Be able to work with these structures, using abstract operations or implementing
new operations as needed or determine which is the best structure for a given
application.

3. Recursion/Induction

e Be able to prove the correctness of a recursive procedure for binary trees using
induction, like the problem on the midterm.

4. Trees

e Be able to show how to insert items into a splay tree

e Be able to show how to insert items into a B-+-tree
5. Hashing

e Be able to show how separate chaining works on given data.

e Be able to show how open addressing works with various collision-handling schemes
(linear probing, quadratic probing, double hashing, rehashing or some given scheme)
on given data. data.

e Be able to determine when hashing is needed in the solution of an application
problem.

e Be able to analyze the complexity of given hashing schemes or algorithms that
use them.

6. Heaps

e Be able to show how to add items to binary min-heaps.
e Be able to show how to do deleteMin operations.

e Be able to determine when to use binary heaps (min or max) for some given
application.



7. Union-Find (Up Trees)

e Be able to show how to do union operations.

e Be able to show how to do find operations.

e Be able to determine when this is the best structure to use for some application.

8. Graphs and Digraphs

e Be able to work with all the variations: directed graphs, undirected graphs,
weighted and unweighted graphs, labeled and unlabeled graphs, etc.

e Be able to use the two different representations we covered: adjacency matrices
and adjacency lists.

e Be able to show how the following algorithms work on given data:

9. Sorting

breadth-first and depth-first traversal
topological sort

the Floyd-Warshall matrix algorithm for determining the minimum costs of
all paths among vertices

the Dijkstra algorithm for finding the shortest path

the Kruskal algorithm for finding the minimal spanning tree of a weighted
graph

the backtracking tree search algorithm for subgraph isomorphism.

e Be familiar with the algorithms and their complexities



