
CSE 373 FINAL Review List

Two Two-Sided 8.5 by 11.0 Crib Sheets Allowed

1. Complexity

• Be able to analyze and compare the time complexities of various algorithms using
Big-O notation.

• Be able to determine which is the best structure (from a list) for a given applica-
tion.

2. Lists, Stacks, and Queues

• Be able to work with these structures, using abstract operations or implementing
new operations as needed or determine which is the best structure for a given
application.

3. Recursion/Induction

• Be able to prove the correctness of a recursive procedure for binary trees using
induction, like the problem on the midterm.

4. Trees

• Be able to show how to insert items into a splay tree

• Be able to show how to insert items into a B+-tree

5. Hashing

• Be able to show how separate chaining works on given data.

• Be able to show how open addressing works with various collision-handling schemes
(linear probing, quadratic probing, double hashing, rehashing or some given scheme)
on given data. data.

• Be able to determine when hashing is needed in the solution of an application
problem.

• Be able to analyze the complexity of given hashing schemes or algorithms that
use them.

6. Heaps

• Be able to show how to add items to binary min-heaps.

• Be able to show how to do deleteMin operations.

• Be able to determine when to use binary heaps (min or max) for some given
application.

1



7. Union-Find (Up Trees)

• Be able to show how to do union operations.

• Be able to show how to do find operations.

• Be able to determine when this is the best structure to use for some application.

8. Graphs and Digraphs

• Be able to work with all the variations: directed graphs, undirected graphs,
weighted and unweighted graphs, labeled and unlabeled graphs, etc.

• Be able to use the two different representations we covered: adjacency matrices
and adjacency lists.

• Be able to show how the following algorithms work on given data:

– breadth-first and depth-first traversal

– topological sort

– the Floyd-Warshall matrix algorithm for determining the minimum costs of
all paths among vertices

– the Dijkstra algorithm for finding the shortest path

– the Kruskal algorithm for finding the minimal spanning tree of a weighted
graph

– the backtracking tree search algorithm for subgraph isomorphism.

9. Sorting

• Be familiar with the algorithms and their complexities

2


