Math Review

CSE 373
Data Structures \& Algorithms
Linda Shapiro
Spring 2013

Today's Outline

- Announcements

Assignment \#1 due Friday, April 12 at 11 pm

- Math Review
- Proof by Induction
- Powers of 2
- Binary numbers

Exponents and Logs

- Algorithm Analysis

Mathematical Induction

Suppose we wish to prove that:
For all $\mathrm{n} \geq \mathrm{n}_{0}$, some predicate $\mathrm{P}(\mathrm{n})$ is true.
We can do this by proving two things:

1. $\mathrm{P}\left(\mathrm{n}_{0}\right)$ - this is called the "base case" or "basis."
2. If $P(k)$, then $P(k+1)$ - this is called the "induction step" or "inductive case"
Note: We prove 2. by assuming $\mathrm{P}(\mathrm{k})$ is true.
Putting these together, we show that $\mathrm{P}(\mathrm{n})$ is true.
4/5/2013
CSE 373 13sp - Math Review
4/5/2013
E 373 13sp - Math Review
Prove: for all $n \geq 1$, the sum of first n powers of $2=2^{n}-1$
in other words: $\quad 1+2+4+\ldots+2^{n-1}=2^{n}-1$.

4

Example: Putting it all together

- Inductive hypothesis: (We assumed this was true)
$1+2+4+\ldots+2^{k-1}=2^{k}-1$
- Induction step: (Adding 2^{k} to both sides)
$1+2+4+\ldots 2^{\mathrm{k}-1}+2^{\mathrm{k}}=2^{\mathrm{k}}-1+2^{\mathrm{k}}=2\left(2^{\mathrm{k}}\right)-1=2^{\mathrm{k}+1}-1$
Therefore if the equation is valid for $\mathrm{n}=\mathrm{k}$, it must also be valid for $\mathrm{n}=\mathrm{k}+1$.

Summary: Our theorem is valid for $\mathrm{n}=1$ (base case) and by the induction step it is therefore valid for $\mathrm{n}=2, \mathrm{n}=3, \ldots$

Thus, it is valid for all integers greater than or equal to 1 .
4/5/2013
CSE 373 13sp - Math Review
7

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
- each "bit" is a 0 or a 1
- an n-bit wide field can represent how many different things?

0000000000101011
4/5/2013
CSE 373 13sp - Math Review
8

Unsigned binary numbers

- For unsigned numbers in a fixed width field
- the minimum value is 0
- the maximum value is $2^{\mathrm{n}}-1$, where n is the number of bits in the field
- The value is $\quad \sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $a_{i}=0$ or $a_{i}=1$

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{\mathrm{n}}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java:

- an int is 32 bits and signed, so "max int" is "about 2 billion"
- a long is 64 bits and signed, so "max long" is $2^{63}-1$

Logarithms and Exponents

- Definition: $\log _{2} x=y$ if and only if $x=2^{y}$
$8=2^{3}$, so $\log _{2} 8=3$
$65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} n$ tells you how many bits are needed to distinguish among n different values.
8 bits can hold any of 256 numbers, for example: 0 to $2^{8}-1$, which is 0 to 255
$\log _{2} 256=8$

4/5/2013 CSE 373 13sp - Math Review $\quad 12$

Logarithms and Exponents

- Since so much is binary in CS, $\mathbf{l o g}$ almost always means $\mathbf{l o g}_{2}$
- Definition: $\mathbf{~}^{\mathbf{l o g}_{2}} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=\mathbf{2}^{\mathbf{y}}$
- So, $\mathbf{l o g}_{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly
See Excel file
for plot data -
play with it!

4/5/2013

One function that grows very quickly, One that grows very slowly

Properties of $\log s$

- We will assume logs to base 2 unless specified otherwise.
- $\mathrm{x}=\log _{2} 2^{\mathrm{x}}$
- $8=2^{3}$, so $\log _{2} 8=3$, so $2^{\left(\log _{2} 8\right)}=$ \qquad
Show:
$\log (A \cdot B)=\log A+\log B$
$\mathrm{A}=2^{\log _{2} \mathrm{~A}}$ and $\mathrm{B}=2^{\log _{2} \mathrm{~B}}$
$A \cdot B=2^{\log _{2} A} \cdot 2^{\log _{2} B}=2^{\log _{2} A+\log _{2} B}$

So: $\quad \log _{2} \mathrm{AB}=\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}$

- Note: $\quad \log A B \neq \log A \cdot \log B!!$

Also, it follows that $\log \left(\mathrm{N}^{\mathrm{k}}\right)=\mathrm{k} \log \mathrm{N}$
4/5/2013 CSE 373 13sp - Math Review ${ }^{21}$

Floor and Ceiling
$\lfloor X\rfloor$ Floor function: the largest integer $\leq x$
$\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2$
$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$
$\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2$

4/5/2013
CSE 373 13sp - Math Review
20

Other \log properties

- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B}$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=\mathrm{B} \log \mathrm{A}$
- $\log \log X<\log X<X \quad$ for all $X>0$
$-\log \log \mathrm{X}=\mathrm{Y}$ means: $2^{2^{\gamma}}=\mathrm{X}$
- Ex. $\quad \log _{2} \log _{2}$ 4billion $\sim \log _{2} \log _{2} 2^{32}=\log _{2} 32=5$
- $\log \mathrm{X}$ grows more slowly than X - called a "sub-linear" function
- $(\log x)(\log x)$ is written $\log ^{2} x$ (aka "log-squared")
- It is greater than $\log \mathrm{x}$ for all $\mathrm{x}>2$
- Note: $\log \log X=\log (\log X) \neq \log ^{2} X$

4/5/2013 CSE 373 13sp - Math Review
22

A \log is a \log is a \log

- "Any base $\mathrm{B} \log$ is equivalent to base $2 \log$ within a constant factor."
$\log _{B} X=\log _{B} X$
$B=2^{\log _{2} B} \quad$ substitution $(B)^{\log _{E} X}=X \quad B^{\log _{B} X}=x$
$\mathrm{X}=2^{\log _{2} \mathrm{x}} \quad\left(2^{\log _{2} \mathrm{~B}}\right)^{\log _{8} \mathrm{x}}=2^{\log _{2} \mathrm{x}}$ by def. of $\log 5$
$2^{\log _{2} B \log _{\mathrm{b}} x}=2^{\log _{2} x}$
$\operatorname{og}_{2} B \log _{B} X=\log _{2} X$

Log base doesn't matter (much)

"Any base $B \log$ is equivalent to base $2 \log$ within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \mathbf{x}=3.22 \log _{10} x$
- In general, we can convert log bases via a constant multiplier
- To convert from base B to base A:
$\log _{B} x=\left(\log _{A} x\right) /\left(\log _{A} B\right)$

Arithmetic Sequences

$\mathrm{N}=\{0,1,2, \ldots\}=$ natural numbers
$[0,1,2, \ldots]$ is an infinite arithmetic sequence
$[a, a+d, a+2 d, a+3 d, \ldots]$ is a general infinite arith. sequence.
There is a constant difference between terms.
$1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad$ useful

4/5/2013

Analyzing the Loop

- Total number of times x is incremented is executed $=$

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
- Big-O ??

4/5/2013
CSE 373 13sp - Math Review 27

