

Today's Outline
 - Announcements
 - Assignment \#1, due Fri, April 12 at 11pm
 - Assignment \#2, posted Fri April 12, due Friday April 19
 - Algorithm Analysis
 - How to compare two algorithms?
 - Analyzing code
 - Big-Oh
 \qquad
 4/8/2013

Comparing Two Algorithms...

- How do you do it?
- Two algorithms for finding the nth value in an array:

1. for $\mathrm{i}:=0$ to $\mathrm{n}-1$ do $\{$ temp $:=\mathrm{v[i]} \mathrm{\} ;} \mathrm{return} \mathrm{temp;}$
2. return $v[n-1]$;

4/8/2013
CSE 373 13sp - Complexity Analysis

- Ignores Details
- Ignores Details

What does rough mean?
-Why do we ignore details?

Definition of BIG OH

- Suppose I analyze my code and find it runs in time proportional to some function $\mathrm{T}(\mathrm{N})$
- e.g. $T(N)=4 N^{2}+6 N+85$
- Def. "BIG OH"
$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N)<=c f(N)$ when $N>=n_{0}$.
- For $\mathrm{N}>=1$
$\mathrm{T}(\mathrm{N})=4 \mathrm{~N}^{2}+6 \mathrm{~N}+85<=4 \mathrm{~N}^{2}+6 \mathrm{~N}^{2}+85 \mathrm{~N}^{2}=95 \mathrm{~N}^{2}$ $\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- $\mathrm{T}(\mathrm{N})$ is "order N^{2} ". It is dominated by the N^{2} term.

Gauging performance

- Uh, why not just run the program and time it?
- Too much variability; not reliable:
- Hardware: processor(s), memory, etc.
- OS, version of Java, libraries, drivers
- Programs running in the background
- Implementation dependent
- Choice of input
- Timing doesn't really evaluate the algorithm; it evaluates an implementation in one very specific scenario

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs (n) because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

4/8/2013

What is Asymptotic Analysis?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!
- So we want to look at what happens as n grows.

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation.)
Consecutive statements Sum of times
Conditionals Time of test plus slower branch
Loops Sum of iterations
Calls Time of call's body
Recursion Solve recurrence equation

4/8/2013
CSE 373 13sp - Complexity Analysis

Linear search

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k)\{ ???
\}

4/8/2013
CSE 373 13sp - Complexity Analysis

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k)\{
for(int i=0; i < arr.length; ++i) if($\operatorname{arr}[i]==k)$
return true;
return false;
\}
Best case:
Worst case:
4/8/2013
CSE 373 13sp - Complexity Analysis

Linear search

								$\mathbf{2}$

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int $i=0 ; i<a r r . l e n g t h ; ~++i)$
if(arr[i] == k)
return true;
return false;
\}
Best case: 6ish steps $=O(1)$ Worst case: $\begin{aligned} & 6 \text { ish*(arr.length) } \\ = & O \text { (arr. length) }\end{aligned}$

Average?

4/8/2013 CSE 373 13sp - Complexity Analysis 13

Binary search

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find int[]arr int
boolean find (int[]arr, int k)\{
return help(arr, $k, 0, a r r . l e n g t h) ; ~$
\}
boolean help(int[]arr, int k, int lo, int hi) \{ int mid $=(h i+1 o) / 2 ; / / i . e ., 10+(h i-l o) / 2$ if(lo==hi) return false; if (arr[mid]==k) return true;
if(arr[mid]< k) return help(arr, k, mid+1,hi); else return help(arr,k,lo,mid);
\}
4/8/2013
CSE 373 13sp - Complexity Analysis 14

Binary search

Best case: 8 ish steps $=O(1)$
Worst case: $T(n)=10$ ish $+T(n / 2)$ where n is hi-lo

- $O(\log n)$ where n is array. length
- Solve recurrence equation to know that...

```
// requires array is sorted
oolean whether k is in array
    oolean find(int[]arr, int k){{
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) (hi+10)/2;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```

4/8/2013
CSE 373 13sp - Complexity Analysis

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case? $T(n)=10+T(n / 2) \quad T(1)=13$ "ish"
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

4/8/2013
CSE 373 13sp - Complexity Analysis
16

Binary Search

- In general, if N is a power of 2 , ie. if $N=2^{k}$ then $\mathrm{K}=\log _{2} \mathrm{~N}$ cuts are required.
- If N is not a power of 2 , just round it up to the next one.

Recurrence Relation for Binary Search

```
T(1) = about 13
T(N) = 10 +T(N/2)
    = 10+10+T(N/4)
    = 10+10+10+T(N/8)
    = 10 * number of cuts +T(1)
    = 10* 知 }N+1
    = c1* 睳 N + c2
```



```
    = O( }\mp@subsup{\operatorname{log}}{2}{}\textrm{N}
```

Prove by Induction that $T(N)=O\left(\log _{2} N\right)$

- For $\mathrm{N}=1, \mathrm{~T}(1)=\mathrm{O}\left(\log _{2} 1\right)=\log _{2} 2^{0}=0$ cuts
- Assume it is true for $\mathrm{N}=2^{\mathrm{k}}$ that there are k cuts and it is $\mathrm{O}(\mathrm{k})$
- When $\mathrm{N}=2^{k+1}$, we first cut it once in half, getting two halves each of which is size 2^{k}.
According to our assumption (above), either of the halves would then get k cuts, so we'd end up with $\mathrm{k}+1$ cuts. Thus for size $\mathrm{N}=$ 2^{k+1}, we get $k+1$ cuts, so the search is $O(k+1)$.
- This is called the guess and prove method for solving recurrence relations. It says to figure it out intuitively first, and then prove it by induction or other methods

