
4/3/2013

1

Complexity Analysis

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
– Assignment #1, due Fri, April 12 at 11pm

– Assignment #2, posted Fri April 12, due Friday April 19

• Algorithm Analysis

– How to compare two algorithms?

– Analyzing code

– Big-Oh

CSE 373 13sp - Complexity Analysis4/8/2013 2

Comparing Two Algorithms…

• How do you do it?

• Two algorithms for finding the nth value in an
array:

1. for i := 0 to n-1 do {temp := v[i]}; return temp;

2. return v[n-1];

CSE 373 13sp - Complexity Analysis4/8/2013 3

What we want

• Rough Estimate

• Ignores Details

• What does rough mean?

• Why do we ignore details?

CSE 373 13sp - Complexity Analysis4/8/2013 4

Big-O Analysis

• Ignores “details”

• What do I mean by O(n)? O(n2)? O(1)?

CSE 373 13sp - Complexity Analysis4/8/2013 5

Definition of BIG OH

• Suppose I analyze my code and find it runs in time
proportional to some function T(N)

• e.g. T(N) = 4N2 +6N + 85

• Def. “BIG OH”

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) <= cf(N) when N >= n0.

• For N >= 1

T(N) = 4N2 +6N + 85 <= 4N2 +6N2 + 85N2 = 95N2

T(N) = O(N2)

• T(N) is “order N2”. It is dominated by the N2 term.

4/8/2013 6CSE 373 13sp - Complexity Analysis

4/3/2013

2

Gauging performance

• Uh, why not just run the program and time it?

– Too much variability; not reliable:

• Hardware: processor(s), memory, etc.

• OS, version of Java, libraries, drivers

• Programs running in the background

• Implementation dependent

• Choice of input

– Timing doesn’t really evaluate the algorithm; it evaluates an
implementation in one very specific scenario

CSE 373 13sp - Complexity Analysis4/8/2013 7

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs,
runs in less time (our focus) or less space

We will focus on large inputs (n) because probably any algorithm isWe will focus on large inputs (n) because probably any algorithm is
“plenty good” for small inputs (if n is 10, probably anything is fast
enough)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up
and timing it on some test cases”

– Can do analysis before coding!

CSE 373 13sp - Complexity Analysis4/8/2013 8

What is Asymptotic Analysis?

• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice

– Databases internet graphics– Databases, internet, graphics, …

• Time difference really shows up as n grows!

• So we want to look at what happens as n grows.

CSE 373 13sp - Complexity Analysis4/8/2013 9

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(Thi i i ti)(This is an approximation.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch

Loops Sum of iterations

Calls Time of call’s body

Recursion Solve recurrence equation

CSE 373 13sp - Complexity Analysis4/8/2013 10

Example

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

???
}

CSE 373 13sp - Complexity Analysis4/8/2013 11

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:

CSE 373 13sp - Complexity Analysis4/8/2013 12

4/3/2013

3

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6ish steps = O(1)

Worst case: 6ish*(arr.length)
= O(arr.length)

Average?

CSE 373 13sp - Complexity Analysis4/8/2013 13

Binary search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// i i t d// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}
CSE 373 13sp - Complexity Analysis4/8/2013 14

Binary search

// requires array is sorted
// returns whether k is in array

Best case: 8ish steps = O(1)
Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

CSE 373 13sp - Complexity Analysis4/8/2013 15

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
T(n) = 10 + T(n/2) T(1) = 13 “ish”

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

CSE 373 13sp - Complexity Analysis4/8/2013 16

For Binary Search

N = 1

N = 2

N 4

Number of Cuts

K = 0

K = 1

K = 2

4/8/2013 CSE 373 13sp - Complexity Analysis 17

N = 4

N = 8

N = 16

K = 3

K = ?

Binary Search

• In general, if N is a power of 2, ie. if N = 2K

then K = log2N cuts are required.

• If N is not a power of 2, just round it up to the
next one.

4/8/2013 CSE 373 13sp - Complexity Analysis 18

4/3/2013

4

Recurrence Relation for Binary
Search

T(1) = about 13

T(N) = 10 + T(N/2)
= 10 + 10 + T(N/4)
= 10 + 10 + 10 + T(N/8)

4/8/2013 CSE 373 13sp - Complexity Analysis 19

 10 + 10 + 10 + T(N/8)
.....
= 10 * number of cuts + T(1)
= 10 * log2N + 13
= c1 * log2N + c2
<= (c1+c2) * log2N
= O(log2N)

Prove by Induction that T(N) = O(log2N)

• For N = 1, T(1) = O(log21) = log220 = 0 cuts.

• Assume it is true for N = 2K that there are k cuts and it is O(k).

• When N = 2k+1, we first cut it once in half, getting two halves
each of which is size 2keach of which is size 2k.

According to our assumption (above), either of the halves would
then get k cuts, so we’d end up with k + 1 cuts. Thus for size N =
2k+1, we get k+1 cuts, so the search is O(k+1).

• This is called the guess and prove method for solving
recurrence relations. It says to figure it out intuitively first, and
then prove it by induction or other methods.

4/8/2013 20CSE 373 13sp - Complexity Analysis

