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Complexity Analysis

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
– Assignment #1, due Fri, April 12 at 11pm

– Assignment #2, posted Fri April 12, due Friday April 19

• Algorithm Analysis

– How to compare two algorithms?

– Analyzing code

– Big-Oh
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Comparing Two Algorithms…

• How do you do it?

• Two algorithms for finding the nth value in an 
array:

1. for i := 0 to n-1 do {temp := v[i]}; return temp;

2. return v[n-1];
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What we want

• Rough Estimate 

• Ignores Details

• What does rough mean?

• Why do we ignore details?
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Big-O Analysis

• Ignores “details”

• What do I mean by O(n)? O(n2)? O(1)?
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Definition of BIG OH

• Suppose I analyze my code and find it runs in time 
proportional to some function T(N)

• e.g. T(N) = 4N2 +6N + 85

• Def. “BIG OH”

T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) <= cf(N) when N >= n0. 

• For N >= 1

T(N) = 4N2 +6N + 85 <= 4N2 +6N2 + 85N2 = 95N2

T(N) = O(N2)

• T(N) is “order N2”.   It is dominated by the N2 term.
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Gauging performance

• Uh, why not just run the program and time it?

– Too much variability; not reliable:

• Hardware: processor(s), memory, etc.

• OS, version of Java, libraries, drivers

• Programs running in the background

• Implementation dependent

• Choice of input

– Timing doesn’t really evaluate the algorithm; it evaluates an 
implementation in one very specific scenario
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Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs, 
runs in less time (our focus) or less space

We will focus on large inputs (n) because probably any algorithm isWe will focus on large inputs (n) because probably any algorithm is 
“plenty good” for small inputs (if n is 10, probably anything is fast 
enough)

Answer will be independent of CPU speed, programming language, 
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up 
and timing it on some test cases”

– Can do analysis before coding!
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What is Asymptotic Analysis?

• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice

– Databases internet graphics– Databases, internet, graphics, …

• Time difference really shows up as n grows!

• So we want to look at what happens as n grows.
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Analyzing code (“worst case”)

Basic operations  take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(Thi i i ti )(This is an approximation.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch

Loops Sum of iterations

Calls Time of call’s body

Recursion Solve recurrence equation
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Example

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

???
}
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Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:
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Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6ish steps = O(1)

Worst case: 6ish*(arr.length)  
= O(arr.length)

Average?
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Binary search

Find an integer in a sorted array    

2 3 5 16 37 50 73 75 126

// i i t d// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}
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Binary search

// requires array is sorted     
// returns whether k is in array

Best case: 8ish steps = O(1)
Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}
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Solving Recurrence Relations

1. Determine the recurrence relation.  What is the base case?
T(n) = 10 + T(n/2) T(1) = 13 “ish”

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case
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For Binary Search

N = 1

N = 2 

N 4

Number of Cuts

K = 0

K = 1

K = 2
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N = 4

N = 8

N = 16

K = 3

K = ?

Binary Search

• In general, if N is a power of 2, ie. if N = 2K

then K = log2N cuts are required.

• If N is not a power of 2, just round it up to the
next one.
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Recurrence Relation for Binary 
Search

T(1) = about 13

T(N) =  10 + T(N/2)
=   10 + 10 + T(N/4)
= 10 + 10 + 10 + T(N/8)
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   10 + 10 + 10 + T(N/8)
.....
=  10 * number of cuts + T(1)
=  10 * log2N + 13
=   c1 * log2N + c2
<=  (c1+c2) * log2N
=   O(log2N)

Prove by Induction that T(N) = O(log2N)

• For N = 1, T(1) = O(log21) = log220 = 0 cuts.

• Assume it is true for N = 2K that there are k cuts and it is O(k).

• When N = 2k+1, we first cut it once in half, getting two halves 
each of which is size 2keach of which is size 2k. 

According to our assumption (above), either of the halves would 
then get k cuts, so we’d end up with k + 1 cuts. Thus for size N = 
2k+1, we get k+1 cuts, so the search is O(k+1).

• This is called the guess and prove method for solving 
recurrence relations. It says to figure it out intuitively first, and 
then prove it by induction or other methods.
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