4/5/2013

Complexity Analysis I

CSE 373
Data Structures & Algorithms
Linda Shapiro
Spring 2013

Today’s Outline

*« Announcements
— Assignment #1, due Friday, April 12 at 11pm

— Assignment #2, posted later this week, due Friday April 19 at
BEGINNING of lecture

« Algorithm Analysis

— Big-Oh
— Analyzing code

4110113 Complexity Analysis 11 2

Ignoring constant factors

* So binary search is O(log n) and linear search is O(n)
— But which is faster?

« Could depend on constant factors:
— How many assignments, additions, etc. for each n
« E.g. T(n) = 5,000,000n vs. T(n) = 5n2
— And could depend on size of n (if n is small then constant
additive factors could be more important)
« E.g. T(n) =5,000,000 +logn vs.T(n)=10+n

« But there exists some n, such that for all n > n, binary search wins
« Some plots will give us intuition...

4110113 Complexity Analysis 1l 3

Linear Search vs. Binary Search

Let'’s try to “help” linear search:

* Run it on a computer 100x as fast (say 2010 model vs. 1990)
« Use a new compiler/language that is 3x as fast

« Be aclever programmer to eliminate half the work

« So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins.

1

JEURRRCL " -

easttll M

. : ~

el I .-

e

F AT

4110113 Complexity Analysis 11 4

Asymptotic notation

The formal definition of Big-O amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
* 4n+5
« 05nlogn+2n+7
+ n¥+20+3n
« nlog(10n?)

4/10/13 Complexity Analysis 11 5

Examples

True or false?

4+3nis O(n)
n+2logn is O(logn)
logn+2 is O(1)
n%is O(1.1")

Eal i

4/10/13 Complexity Analysis 11 6

4/5/2013

Big-Oh relates functions

Weusa [on afiumclion § {lorexample n?) io mean &e set of
Favtions with asympioli: iahavior iass thar or aqual to 0

So (3PH17) isin O
30417 and 1P have the same asymgrotlic behavior

Confimingly, we also sayhwilte

(@17 s 0 Yo

1Ty € Ol

@17y = Ofn)

a1 leonderi? Y
Bast wa wonld newer say O(n7) = (32417

4110113 Complexity Analysis 11 8

n n% 1.0
Examples 11 i1
True or false? 2 1.1E15 1.2
T 3 7.2E23 1.3
1. 4+3nis O(n) rue eoaee
2. n+2logn is O(logn) False 6 8.1E38 18
3. logn+2is O(1) False 7 18E42 1.9
4. n%is O(1.1m) 8 1.4E45 2.1
True 9 5.6E47 2.4
10 1.0E50 2.6
BUT
1M 1.0E450 1.0E500 (over)
4/10/13 Complexity Analysis 11 7
Formal Big-Oh (again) ot ‘o
¢
Definition: g(n)is O(f(n)) iff there exist ()
positive constants ¢ and n, such that d
o —> N
g(n) < cf(n) forallnzn,

To show g(n) is O(f(n)), pick a c large enough to “cover the constant
factors” and n, large enough to “cover the lower-order terms”

« Example: Let g(n) = 3n2+17 and f(n) = n?
¢ =5and n, = 10 is more than good enough
since 3n?+17 < 5n2?for n> 10

This is “less than or equal to”
— So 3n2+17 is also O(n%) and O(2") etc.
— BUT NOBODY SAYS THAT WHEN DOING COMPLEXITY ANAL.

4110113 Complexity Analysis 1l 9

Using the definition of Big-Oh (Example 1)
Given: g(n)=1000n Def'n:
1. Letf(n)=n g(n)is O(f(n)) iff there exist

. X positive constants ¢ and n, s.t.
Prove: g(n)is O(f(n)) gn)< cf(n) foralln2n,
1000n < 1000n
¢ =1000, n, = 1 (or anything)

2. Letf(n)=n2

Prove: g(n)isin O(f(n))

1000n < 1000n? forn> 1

¢=1000, n,=1

Also try ¢ =1, n, = 1000

But anyone doing a complexity analysis would do 1 and not 2, ie.
Choose the smallest common function that works.

10/07/2011 Complexity Analysis 11

Using the definition of Big-Oh (Example 2)

Def'n:

g(n)isin O(f(n)) iff there exist
positive constants ¢ and n; s.t.
g(n) £ cf(n) foralln>n,

Given: g(n)=3n?2+4n & f(n)=n?
Prove: g(n)isin O(f(n))

« Avalid proof is to find valid ¢ & n,
+ 3n?2+4n

* <3n2+4n2=7n2forn>1

« Are there other combinations of constants that work?

4/10/13 Complexity Analysis I

Using the definition of Big-Oh (Example 3)

Def'n:

g(n)is in O(f(n)) iff there exist
positive constants ¢ and n; s.t.
g(n)< cf(n) foralln2n,

Given: g(n)=n* & f(n)=2n,
Prove: g(n)is O(f(n))

* Avalid proof is to find valid c & n,
* One possible answer: n,=20,andc =1

< But this f(n) is an upper bound on g(n).
« The function f(n) = 2"has exponential growth.
« The function g(n) = n* has polynomial growth (of degree 4).

« The exponential function is for large n going to be much larger.

« Try some comparisons. 2%=1.1E15 50*= 6,250,000

4/10/13 Complexity Analysis 11

4/5/2013

What's with the c?

* To capture this notion of similar asymptotic behavior, we allow a
constant multiplier (called c)

» Consider:
g(n) =7n+5
f(n)=n

* These have the same asymptotic behavior (linear),
so g(n)is O(f(n)) even though g(n) is always larger
» There is no positive n, such that g(n) < f(n) foralln=n,
+ The ‘c’ in the definition allows for that:
g(n)< cf(n) foralln>n,
* Toprove g(n)is O(f(n)), have c =12, n,=1

4/10/13 Complexity Analysis 11 13

Big Oh: Common Categories

From fastest to slowest:

o(1) constant (same as O(k) for constant k)
O(logn) logarithmic (logyn, log n2is O(log n))
O(n) linear

O(n log n) “n log n”

O(n?) quadratic

O(n3) cubic

O(nk) polynomial (where is k is an constant)
O(kM) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to k" for some k>1"

We tend to use the smallest common function that satisfies the def.

4110113 Complexity Analysis 11 14

More Definitions

Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)

+ g(n)is O(f(n)) if there exist positive constants ¢ and n, such that
g(n)< cf(n)foralln=n,
Lower bound: Q(f(n)) is the set of all functions asymptotically

greater than or equal to f(n)
« g(n)is Q(f(n)) if there exist positive constants ¢ and n, such that

g(n)=c f(n)foralln=n,

Tight bound: 0(f(n)) is the set of all functions asymptotically
equal to f(n)
+ g(n)is 6(f(n))ifboth: g(n)is O(f(n))AND

g(n)is Q(f(n))

Even More Definitions...

o(f(n)) is the set of all functions asymptotically less than f(n)
+ g(n)is o(f(n)) if for any positive constant c, there exists a positive
constant n, such that
g(n)<cf(n)foralln>n,

o(f(n)) is the set of all functions asymptotically greater than f(n)
* g(n)is w(f(n)) if for any positive constant c, there exists a positive
constant n, such that
g(n)>cf(n)foralln>n,

4110113 Complexity Analysis 11 16

41013 Complexity Analysis 11 15
Intuitively
Asymptotic Notation Mathematics Relation
o <
Q >
® =
0 <
(0] >
4/10/13 Complexity Analysis I 17

Types of Analysis

Two orthogonal axes:

— bound flavor (usually we talk about upper or tight)
* upper bound (O, o)
* lower bound (Q, ®)
+ asymptotically tight (®)

— analysis case (usually we talk about worst)
+ worst case (adversary)
* average case
* best case

+ “amortized” (not in this class) uses the idea that certain
costly operations cannot occur frequently enough to

cause trouble.
4/10/13 cse GodnplexiyMpaiptitit Analysis 11 18

Which Function Grows Faster?

n3 + 2n? ys, 100n2 + 1000

4710113 cse 373CdmpleAiyniotatisianblysis 11 19

4/5/2013

Which Function Grows Faster?

n3 + 2n2 vs. 100n2 + 1000

4110113 cse 373CdmpleAityniutatisiabblysis 11 20

Which Function Grows Faster?

no-1 vs. log n

4110113 Complexity Analysis 1l 21

Which Function Grows Faster?

no-1 VS. log n
S |]
| B i —
| |
Ll |
.| |
! |
| |
| |
4/10113 Complexity Analysis 11 22

Which Function Grows Faster?

5n° VS. nt

4/10/13 Complexity Analysis 11 23

Which Function Grows Faster?

5n° VS. nlt

4/10/13 Complexity Analysis 11 24

4/5/2013

Nested Loops

one nested loop
for i =1 to n do O(n?)
for j =1 to n do
sum = sum + 1

two consecutive loops
for i =1 to n do
sum = sum + 1
- n+n? <=2n2
for i =1 to n do o)
for j =1 to n do
sum = sum + 1

4/10/13 Complexity Analysis 11 25

More Nested Loops

for i =1 to n do
for j =1 to n do

if (cond) {
do_stuff(sum)
} else {
for kK =1 to n*n

sum += 1

For if-else statement, we assume for the worst case
that max complexity branch will be taken.

What happens here?

4110113 Complexity Analysis 11 2

Big-Oh Caveats

* Asymptotic complexity (Big-Oh) focuses on behavior for |arge n
and is independent of any computer / coding trick
— But you can “abuse” it to be misled about trade-offs
— Example: n""%vs. log n
« Asymptotically n'/1° grows more quickly
« But the “cross-over” point is around 5 * 10'7
« So if you have input size less than 2%, you prefer n'/10

» Comparing O() for small n values can be misleading
— Quicksort: O(nlogn) (expected)
— Insertion Sort: O(n?) (expected)
— Yetin reality Insertion Sort is faster for small n’s

4110113 Complexity Analysis 1l 27

Addendum: Timing vs. Big-Oh?

« At the core of CS is a backbone of theory & mathematics
— Examine the algorithm itself, mathematically, not the
implementation
— Reason about performance as a function of n
— Be able to mathematically prove things about performance

« Yet, timing has its place
— Inthe real world, we do want to know whether
implementation A runs faster than implementation B on data
setC
— Ex: Benchmarking graphics cards
— We will do some timing in HW 2

4110113 Complexity Analysis 11

