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Complexity Analysis II

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
– Assignment #1, due Friday, April 12 at 11pm

– Assignment #2, posted later this week, due Friday April 19 at 
BEGINNING of lecture

• Algorithm Analysis
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• Algorithm Analysis

– Big-Oh

– Analyzing code
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Ignoring constant factors

• So binary search is O(log n) and linear search is O(n)

– But which is faster?

• Could depend on constant factors:

– How many assignments, additions, etc. for each n

• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on size of n (if n is small then constant 
additive factors could be more important)

• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins

• Some plots will give us intuition…
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Linear Search vs. Binary Search
Let’s try to “help” linear search:

• Run it on a computer 100x as fast (say 2010 model vs. 1990)

• Use a new compiler/language that is 3x as fast

• Be a clever programmer to eliminate half the work

• So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster!  But eventually binary search wins., y y
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Asymptotic notation

The formal definition of Big-O amounts to saying:

1. Eliminate low-order terms

2. Eliminate coefficients

Examples:

• 4n + 5
• 0.5n log n + 2n + 7

• n3 + 2n + 3n
• n log (10n2 )
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Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)
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Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

True

False

False

True

n     n50 1.1n

1 1       1.1
2 1.1E15         1.2
3 7.2E23         1.3
4 1.3E30         1.5
5 8.9E34         1.6
6 8.1E38         1.8
7 1.8E42         1.9
8 1.4E45         2.1
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True
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9 5.6E47         2.4
10 1.0E50         2.6
....
BUT
1M   1.0E450   1.0E500 (over)

Big-Oh relates functions
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Formal Big-Oh (again)

Definition:   g(n) is  O( f(n) ) iff there exist
positive constants c and n0 such that 

g(n)  c f(n) for all n  n0

To show g(n) is O( f(n) ), pick a c large enough to “cover the constant 
factors” and n0 large enough to “cover the lower-order terms”

• Example: Let g(n) = 3n2+17 and f(n) = n2

c = 5 and n0 = 10 is more than good enough 

since 3n2+17  5n2 for n  10

This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n)  etc. 

– BUT NOBODY SAYS THAT WHEN DOING COMPLEXITY ANAL.
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Using the definition of Big-Oh (Example 1)
Given: g(n) = 1000n      

1.  Let f(n) = n

Prove: g(n) is  O(f(n))

1000n  1000n

c = 1000, n0 = 1 (or anything)

Def’n:   
g(n) is O( f(n) ) iff there exist
positive constants c and n0 s.t.
g(n)  c f(n) for all n  n0

2. Let f(n) = n2

Prove: g(n) is in O(f(n))

1000n  1000n2 for n  1

c = 1000, n0 = 1

Also try c = 1, n0 = 1000

But anyone doing a complexity analysis would do 1 and not 2, ie. 
Choose the smallest common function that works.
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Using the definition of Big-Oh (Example 2)

Given: g(n) = 3n2 + 4n   &   f(n) = n2

Prove: g(n) is in O(f(n))

• A valid proof is to find valid c & n0

• 3n2 + 4n

•  3n2 + 4n2 = 7n2 for n  1

• Are there other combinations of constants that work?

Def’n:   
g(n) is in O( f(n) ) iff there exist
positive constants c and n0 s.t.
g(n)  c f(n) for all n  n0
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• Are there other combinations of constants that work?
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Using the definition of Big-Oh (Example 3)

Given: g(n) = n4   &   f(n) = 2n, 

Prove: g(n) is O(f(n))

• A valid proof is to find valid c & n0

• One possible answer: n0 = 20, and c  = 1

B t thi f( ) i b d ( )

Def’n:   
g(n) is in O( f(n) ) iff there exist
positive constants c and n0 s.t.
g(n)  c f(n) for all n  n0
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• But this f(n) is an upper bound on g(n). 

• The function f(n) = 2n has exponential growth.

• The function g(n) = n4 has polynomial growth (of degree 4).

• The exponential function is for large n going to be much larger.

• Try some comparisons.     250 = 1.1E15    504 = 6,250,000
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What’s with the c?

• To capture this notion of similar asymptotic behavior, we allow a 
constant multiplier (called c)

• Consider:

g(n) = 7n+5

f(n) = n

13

• These have the same asymptotic behavior (linear), 
so g(n) is  O(f(n)) even though g(n) is always larger

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

• The ‘c’ in the definition allows for that:
g(n)  c f(n) for all n  n0

• To prove g(n) is  O(f(n)), have c = 12, n0 = 1
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Big Oh: Common Categories

From fastest to slowest:
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic (logkn, log n2 is O(log n))
O(n) linear
O(n log n)         “n log n”
O(n2) quadratic
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O(n3) cubic
O(nk) polynomial (where is k is an constant)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it 
means “grows at rate proportional to kn for some k>1”

We tend to use the smallest common function that satisfies the def.
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More Definitions

• Upper bound: O( f(n) ) is the set of all functions asymptotically 
less than or equal to f(n)

• g(n) is  O( f(n) ) if there exist positive constants c and n0 such that 

g(n)  c f(n) for all n  n0

• Lower bound: ( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n)

• g(n) is  ( f(n) ) if there exist positive constants c and n0 such that 

g(n)  c f(n) for all n  n0

• Tight bound: ( f(n) ) is the set of all functions asymptotically 
equal to f(n)

• g(n) is ( f(n) ) if both: g(n) is O( f(n) ) AND 
g(n) is ( f(n) ) 
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Even More Definitions…

o( f(n) ) is the set of all functions asymptotically less than f(n)

• g(n) is  o(f(n) ) if for any positive constant c, there exists a positive 
constant n0 such that 

g(n) < c f(n) for all n  n0

( f(n) ) is the set of all functions asymptotically greater than f(n)

• g(n) is (f(n) ) if for any positive constant c, there exists a positive 
constant n0 such that 

g(n) > c f(n) for all n  n0
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Intuitively

Asymptotic Notation Mathematics Relation
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Types of Analysis

Two orthogonal axes:

– bound flavor (usually we talk about upper or tight)

• upper bound (O, o)

• lower bound (, )
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• asymptotically tight ()

– analysis case (usually we talk about worst)

• worst case (adversary)

• average case

• best case

• “amortized”  (not in this class) uses the idea that certain 
costly operations cannot occur frequently enough to 
cause trouble.
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Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.
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Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.
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Which Function Grows Faster?

n0.1 log nvs.
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Which Function Grows Faster?

n0.1 log nvs.
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Which Function Grows Faster?

5n5 n!vs.
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Which Function Grows Faster?

5n5 n!vs.
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Nested Loops

one nested loop

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

O(n2)

4/10/13

two consecutive loops

for i = 1 to n do

sum = sum + 1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1
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n + n2 <= 2n2

O(n2)

More Nested Loops

for i = 1 to n do

for j = 1 to n do

if (cond) {

do_stuff(sum)

} else {

for k = 1 to n*n

4/10/13

for k  = 1 to n n

sum += 1
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For if-else statement, we assume for the worst case
that max complexity branch will be taken.

What happens here?

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n
and is independent of any computer / coding trick

– But you can “abuse” it to be misled about trade-offs
– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So if you have input size less than 258, you prefer n1/10

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn) (expected)

– Insertion Sort: O(n2) (expected)

– Yet in reality Insertion Sort is faster for small n’s
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Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics

– Examine the algorithm itself, mathematically, not the 
implementation

– Reason about performance as a function of n

– Be able to mathematically prove things about performance

28

• Yet, timing has its place

– In the real world, we do want to know whether 
implementation A runs faster than implementation B on data 
set C

– Ex: Benchmarking graphics cards

– We will do some timing in HW 2
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