

Today's Outline

- Announcements
- Assignment\#1, due Friday, April 12 at 11 pm
- Assignment \#2, posted later this week, due Friday April 19 at BEGINNING of lecture
- Algorithm Analysis
- Big-Oh
- Analyzing code

Ignoring constant factors

- So binary search is $O(\boldsymbol{\operatorname { l o g }} n)$ and linear search is $O(n)$
- But which is faster?
- Could depend on constant factors
- How many assignments, additions, etc. for each n

$$
\text { - E.g. } T(n)=5,000,000 n \quad \text { vs. } T(n)=5 n^{2}
$$

- And could depend on size of n (if n is small then constant additive factors could be more important)
- E.g. $T(n)=5,000,000+\log n$ vs. $T(n)=10+n$
- But there exists some n_{0} such that for all $n>n_{0}$ binary search wins
- Some plots will give us intuition...

4/10/13
Complexity Analysis II ${ }^{3}$

Linear Search vs. Binary Search

Let's try to "help" linear search:

- Run it on a computer 100x as fast (say 2010 model vs. 1990)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600 x as fast as in binary search

For small n , linear search is faster! But eventually binary search wins.

Examples

True or false?

1. $4+3 n$ is $\mathrm{O}(\mathrm{n})$
2. $n+2 \log n$ is $O(\log n)$
3. $\operatorname{logn}+2$ is $\mathrm{O}(1)$
4. n^{50} is $\mathrm{O}\left(1.1^{1 \mathrm{n}}\right)$

- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

The formal definition of Big-O amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
.

Asymptotic notation

Examples			n^{50}	1.1.1
			1	1.1
True or false?			1.1 E 15	1.2
			7.2E23	1.3
1. $4+3 \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$	True		1.3 E 30	1.5
2. $n+2 \operatorname{logn}$ is $\mathrm{O}(\operatorname{logn)}$	False		8.9E34	1.6
3. $\log \mathrm{n}+2$ is $\mathrm{O}(1)$	False		1.8E42	1.9
4. n^{50} is $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$	True		1.4E45	2.1
			5.6E47	2.4
		10	1.0 E 50	2.6
		BUT		
		1M	1.0 E 450	1.0 E 500 (over)
4/10/13	Complexity Ana			7

Big-Oh relates functions


```
So(3n+2+17) is in O(n
    3n+17 and n}\mp@subsup{n}{}{3}\mathrm{ have the grme Raympdotchehavior
Canfimingy, we also smpwilts
    (3\mp@subsup{n}{}{2}+17) is O(n
    (3n+17)\inO(n)
    (3\mp@subsup{r}{}{2}+17)=O(\mp@subsup{n}{}{2})
    (3n+17) ls order n}\mp@subsup{n}{}{2
Bit wa would never fayy O(n)}=(3\mp@subsup{n}{}{2}+17

Formal Big-Oh (again)
\begin{tabular}{|l|}
\hline Definition: \(g(n)\) is \(O(f(n))\) iff there exist \\
positive constants \(c\) and \(n_{0}\) such that \\
\(g(n) \leq c f(n) \quad\) for all \(n \geq n_{0}\) \\
\hline
\end{tabular}


To show \(g(n)\) is \(O(f(n))\), pick a \(c\) large enough to "cover the constant factors" and \(n_{0}\) large enough to "cover the lower-order terms"
- Example: Let \(\mathrm{g}(n)=3 n^{2}+17\) and \(\mathrm{f}(n)=n^{2}\)
\(c=5\) and \(n_{0}=10\) is more than good enough
since \(3 n^{2}+17 \leq 5 n^{2}\) for \(n \geq 10\)
This is "less than or equal to"
- So \(3 n^{2}+17\) is also \(O\left(n^{5}\right)\) and \(O\left(2^{n}\right)\) etc.
- BUT NOBODY SAYS THAT WHEN DOING COMPLEXITY ANAL.

4/10/13

\section*{Using the definition of Big-Oh (Example 1)}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Given: \(g(n)=1000 n\) \\
1. Let \(f(n)=n\) \\
Prove: \(g(n)\) is \(O(f(n))\)
\end{tabular} & \begin{tabular}{l}
Def'n: \\
\(\mathrm{g}(n)\) is \(\mathrm{O}(\mathrm{f}(n))\) iff there exist positive constants \(c\) and \(n_{0}\) s.t. \(\mathrm{g}(n) \leq c \mathrm{f}(n) \quad\) for all \(n \geq n_{0}\)
\end{tabular} \\
\hline 1000n \(51000 n\) & \\
\hline \(c=1000, n_{0}=1\) (or anything) & \\
\hline 2. Let \(\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}\) & \\
\hline Prove: \(\mathrm{g}(\mathrm{n})\) is in \(\mathrm{O}(\mathrm{f}(\mathrm{n})\) ) & \\
\hline \(1000 \mathrm{n} \leq 1000 \mathrm{n}^{2}\) for \(\mathrm{n} \geq 1\) & \\
\hline \(c=1000, n_{0}=1\) & \\
\hline Also try \(c=1, n_{0}=1000\) & \\
\hline But anyone doing a complexity analysis wo Choose the smallest common function th & d do 1 and not 2, ie. at works. \\
\hline 10/07/2011 Complexity Analysis II & 10 \\
\hline
\end{tabular}

\section*{Using the definition of Big-Oh (Example 3)}
Given: \(g(n)=n^{4} \& f(n)=2^{n}\),
Prove: \(g(n)\) is \(O(f(n))\)
- A valid proof is to find valid \(c \& n_{0} \quad\)\begin{tabular}{l} 
Def' \(n\) : \\
\(g(n)\) is in \(O(f(n))\) iff there exist \\
positive constants \(c\) and \(n_{0}\) s.t. \\
\(g(n) \leq c f(n) \quad\) for all \(n \geq n_{0}\)
\end{tabular}
- One possible answer: \(n_{0}=20\), and \(c=1\)
- But this \(f(n)\) is an upper bound on \(g(n)\).
- The function \(f(n)=2^{n}\) has exponential growth.
- The function \(g(n)=n^{4}\) has polynomial growth (of degree 4).
- The exponential function is for large \(n\) going to be much larger.
- Try some comparisons. \(2^{50}=1.1 E 15 \quad 50^{4}=6,250,000\)
\(4 / 10 / 13\)

\section*{What's with the \(c\) ?}
- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider
```

g(n) = 7n+5

```
\(f(n)=n\)
- These have the same asymptotic behavior (linear), so \(g(n)\) is \(O(f(n))\) even though \(g(n)\) is always larger
- There is no positive \(n_{0}\) such that \(g(n) \leq f(n)\) for all \(n \geq n_{0}\)
- The ' \(c\) ' in the definition allows for that:
\(g(n) \leq c f(n) \quad\) for all \(n \geq n_{0}\)
- To prove \(g(n)\) is \(O(f(n))\), have \(c=12, n_{0}=1\)

\section*{Big Oh: Common Categories}
\begin{tabular}{ll} 
From fastest to slowest: \\
\(O(1)\) & constant (same as \(O(k)\) for constant \(k)\) \\
\(O(\log n)\) & \(\log\) ) \\
\(O(n)\) & linear \\
\(O(\mathrm{n} \log n)\) & "n \(\log n "\) \\
\(O\left(n^{2}\right)\) & quadratic \\
\(O\left(n^{3}\right)\) & cubic \\
\(O\left(n^{k}\right)\) & polynomial (where is \(k\) is an constant) \(O(\log n))\) \\
\(O\left(k^{n}\right)\) & exponential (where \(k\) is any constant > 1
\end{tabular}

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to \(k^{\mathrm{n}}\) for some \(k>1\) "

We tend to use the smallest common function that satisfies the def.

4/10/13
Complexity Analysis II

\section*{Even More Definitions...}
\(o(f(n))\) is the set of all functions asymptotically less than \(f(n)\)
- \(g(n)\) is \(o(f(n))\) if for any positive constant \(c\), there exists a positive constant \(n_{0}\) such that
\[
\mathrm{g}(n)<c \mathrm{f}(\mathrm{n}) \text { for all } n \geq n_{0}
\]
\(\omega(f(n))\) is the set of all functions asymptotically greater than \(f(n)\)
- \(g(n)\) is \(\omega(f(n))\) if for any positive constant c , there exists a positive constant \(n_{0}\) such that
\(g(n)>c f(n)\) for all \(n \geq n_{0}\)
- Tight bound: \(\theta(f(n))\) is the set of all functions asymptotically equal to \(f(n)\)
- \(g(n)\) is \(\theta(f(n))\) if both: \(g(n)\) is \(O(f(n))\) AND \(g(n)\) is \(\Omega(f(n))\)

4/10/13
Complexity Analysis II
15

\section*{Intuitively}
\begin{tabular}{c|c} 
Asymptotic Notation & Mathematics Relation \\
\hline O & \(\leq\) \\
\hline\(\Omega\) & \(\geq\) \\
\hline\(\Theta\) & \(<\) \\
\hline\(o\) & \(>\)
\end{tabular}

4/10/13
Complexity Analysis II 17

\section*{Types of Analysis}

Two orthogonal axes:
- bound flavor (usually we talk about upper or tight)
- upper bound (O, o)
- lower bound \((\Omega, \omega)\)
- asymptotically tight \((\Theta)\)
- analysis case (usually we talk about worst)
- worst case (adversary)
- average case
- best case
- "amortized" (not in this class) uses the idea that certain costly operations cannot occur frequently enough to cause trouble.
cse CanaplexityABynipstisit Analysis II 18

Which Function Grows Faster?
\[
n^{3}+2 n^{2} \text { vs. } 100 n^{2}+1000
\]

4/10/13
\(\mathrm{n}^{0.1}\)
vs. \(\log \mathrm{n}\)

4/10/13
21
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Which Function Grows Faster?} \\
\hline \(5 n^{5}\) & vs. & \(n!\) \\
\hline
\end{tabular}

23

Which Function Grows Faster?
\(n^{3}+2 n^{2}\)
vs. \(100 n^{2}+1000\)



Which Function Grows Faster?
\(5 n^{5}\) vs. \(n!\)


\section*{Nested Loops}
one nested loop
for \(i=1\) to \(n\) do
\(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
for \(j=1\) to \(n\) do
sum \(=\) sum +1
two consecutive loops
for \(i=1\) to \(n\) do
sum \(=\) sum +1
for \(i=1\) to \(n\) do
\(n+n^{2}<=2 n^{2}\)
\(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
for \(j=1\) to \(n\) do
sum \(=\) sum +1

4/10/13
25

\section*{More Nested Loops}
for \(i=1\) to \(n\) do
for \(j=1\) to \(n\) do
if (cond) \{
do_stuff(sum)
\} else \{
for \(k=1\) to \(n * n\)
sum += 1

For if-else statement, we assume for the worst case
that max complexity branch will be taken.
What happens here?

4/10/13
Complexity Analysis II

\section*{Big-Oh Caveats}
- Asymptotic complexity (Big-Oh) focuses on behavior for large \(n\) and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: \(n^{1 / 10}\) vs. \(\log n\)
- Asymptotically \(n^{1 / 10}\) grows more quickly
- But the "cross-over" point is around 5 * \(10^{17}\)
- So if you have input size less than \(2^{58}\), you prefer \(n^{1 / 10}\)
- Comparing O() for small \(n\) values can be misleading
- Quicksort: O(nlogn) (expected)
- Insertion Sort: \(O\left(n^{2}\right)\) (expected)
- Yet in reality Insertion Sort is faster for small n's

4/10/13
Complexity Analysis II```

