
4/5/2013

1

Complexity Analysis II

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
– Assignment #1, due Friday, April 12 at 11pm

– Assignment #2, posted later this week, due Friday April 19 at
BEGINNING of lecture

• Algorithm Analysis

4/10/13

• Algorithm Analysis

– Big-Oh

– Analyzing code

2Complexity Analysis II

Ignoring constant factors

• So binary search is O(log n) and linear search is O(n)

– But which is faster?

• Could depend on constant factors:

– How many assignments, additions, etc. for each n

• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on size of n (if n is small then constant
additive factors could be more important)

• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins

• Some plots will give us intuition…

4/10/13 3Complexity Analysis II

Linear Search vs. Binary Search
Let’s try to “help” linear search:

• Run it on a computer 100x as fast (say 2010 model vs. 1990)

• Use a new compiler/language that is 3x as fast

• Be a clever programmer to eliminate half the work

• So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins., y y

4/10/13 4Complexity Analysis II

Asymptotic notation

The formal definition of Big-O amounts to saying:

1. Eliminate low-order terms

2. Eliminate coefficients

Examples:

• 4n + 5
• 0.5n log n + 2n + 7

• n3 + 2n + 3n
• n log (10n2)

4/10/13 5Complexity Analysis II

Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

64/10/13 Complexity Analysis II

4/5/2013

2

Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

True

False

False

True

n n50 1.1n

1 1 1.1
2 1.1E15 1.2
3 7.2E23 1.3
4 1.3E30 1.5
5 8.9E34 1.6
6 8.1E38 1.8
7 1.8E42 1.9
8 1.4E45 2.1

7

True

4/10/13 Complexity Analysis II

9 5.6E47 2.4
10 1.0E50 2.6
....
BUT
1M 1.0E450 1.0E500 (over)

Big-Oh relates functions

4/10/13 8Complexity Analysis II

Formal Big-Oh (again)

Definition: g(n) is O(f(n)) iff there exist
positive constants c and n0 such that

g(n) c f(n) for all n n0

To show g(n) is O(f(n)), pick a c large enough to “cover the constant
factors” and n0 large enough to “cover the lower-order terms”

• Example: Let g(n) = 3n2+17 and f(n) = n2

c = 5 and n0 = 10 is more than good enough

since 3n2+17 5n2 for n 10

This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

– BUT NOBODY SAYS THAT WHEN DOING COMPLEXITY ANAL.

4/10/13 9Complexity Analysis II

Using the definition of Big-Oh (Example 1)
Given: g(n) = 1000n

1. Let f(n) = n

Prove: g(n) is O(f(n))

1000n 1000n

c = 1000, n0 = 1 (or anything)

Def’n:
g(n) is O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) c f(n) for all n n0

2. Let f(n) = n2

Prove: g(n) is in O(f(n))

1000n 1000n2 for n 1

c = 1000, n0 = 1

Also try c = 1, n0 = 1000

But anyone doing a complexity analysis would do 1 and not 2, ie.
Choose the smallest common function that works.

10/07/2011
10

Complexity Analysis II

Using the definition of Big-Oh (Example 2)

Given: g(n) = 3n2 + 4n & f(n) = n2

Prove: g(n) is in O(f(n))

• A valid proof is to find valid c & n0

• 3n2 + 4n

• 3n2 + 4n2 = 7n2 for n 1

• Are there other combinations of constants that work?

Def’n:
g(n) is in O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) c f(n) for all n n0

11

• Are there other combinations of constants that work?

4/10/13 Complexity Analysis II

Using the definition of Big-Oh (Example 3)

Given: g(n) = n4 & f(n) = 2n,

Prove: g(n) is O(f(n))

• A valid proof is to find valid c & n0

• One possible answer: n0 = 20, and c = 1

B t thi f() i b d ()

Def’n:
g(n) is in O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) c f(n) for all n n0

12

• But this f(n) is an upper bound on g(n).

• The function f(n) = 2n has exponential growth.

• The function g(n) = n4 has polynomial growth (of degree 4).

• The exponential function is for large n going to be much larger.

• Try some comparisons. 250 = 1.1E15 504 = 6,250,000

4/10/13 Complexity Analysis II

4/5/2013

3

What’s with the c?

• To capture this notion of similar asymptotic behavior, we allow a
constant multiplier (called c)

• Consider:

g(n) = 7n+5

f(n) = n

13

• These have the same asymptotic behavior (linear),
so g(n) is O(f(n)) even though g(n) is always larger

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

• The ‘c’ in the definition allows for that:
g(n) c f(n) for all n n0

• To prove g(n) is O(f(n)), have c = 12, n0 = 1

4/10/13 Complexity Analysis II

Big Oh: Common Categories

From fastest to slowest:
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic (logkn, log n2 is O(log n))
O(n) linear
O(n log n) “n log n”
O(n2) quadratic

14

O(n3) cubic
O(nk) polynomial (where is k is an constant)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to kn for some k>1”

We tend to use the smallest common function that satisfies the def.

4/10/13 Complexity Analysis II

More Definitions

• Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)

• g(n) is O(f(n)) if there exist positive constants c and n0 such that

g(n) c f(n) for all n n0

• Lower bound: (f(n)) is the set of all functions asymptotically
greater than or equal to f(n)

• g(n) is (f(n)) if there exist positive constants c and n0 such that

g(n) c f(n) for all n n0

• Tight bound: (f(n)) is the set of all functions asymptotically
equal to f(n)

• g(n) is (f(n)) if both: g(n) is O(f(n)) AND
g(n) is (f(n))

4/10/13 15Complexity Analysis II

Even More Definitions…

o(f(n)) is the set of all functions asymptotically less than f(n)

• g(n) is o(f(n)) if for any positive constant c, there exists a positive
constant n0 such that

g(n) < c f(n) for all n n0

(f(n)) is the set of all functions asymptotically greater than f(n)

• g(n) is (f(n)) if for any positive constant c, there exists a positive
constant n0 such that

g(n) > c f(n) for all n n0

4/10/13 16Complexity Analysis II

Intuitively

Asymptotic Notation Mathematics Relation

O

4/10/13 17

 =

o <

 >

Complexity Analysis II

Types of Analysis

Two orthogonal axes:

– bound flavor (usually we talk about upper or tight)

• upper bound (O, o)

• lower bound (,)

4/10/13

• asymptotically tight ()

– analysis case (usually we talk about worst)

• worst case (adversary)

• average case

• best case

• “amortized” (not in this class) uses the idea that certain
costly operations cannot occur frequently enough to
cause trouble.

18cse 373 11au - Asymptotic Analysis IIComplexity Analysis II

4/5/2013

4

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

4/10/13 19cse 373 11au - Asymptotic Analysis IIComplexity Analysis II

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

4/10/13 20cse 373 11au - Asymptotic Analysis IIComplexity Analysis II

Which Function Grows Faster?

n0.1 log nvs.

4/10/13 21Complexity Analysis II

Which Function Grows Faster?

n0.1 log nvs.

4/10/13 22Complexity Analysis II

Which Function Grows Faster?

5n5 n!vs.

4/10/13 23Complexity Analysis II

Which Function Grows Faster?

5n5 n!vs.

4/10/13 24Complexity Analysis II

4/5/2013

5

Nested Loops

one nested loop

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

O(n2)

4/10/13

two consecutive loops

for i = 1 to n do

sum = sum + 1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

25Complexity Analysis II

n + n2 <= 2n2

O(n2)

More Nested Loops

for i = 1 to n do

for j = 1 to n do

if (cond) {

do_stuff(sum)

} else {

for k = 1 to n*n

4/10/13

for k = 1 to n n

sum += 1

26Complexity Analysis II

For if-else statement, we assume for the worst case
that max complexity branch will be taken.

What happens here?

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n
and is independent of any computer / coding trick

– But you can “abuse” it to be misled about trade-offs
– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So if you have input size less than 258, you prefer n1/10

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn) (expected)

– Insertion Sort: O(n2) (expected)

– Yet in reality Insertion Sort is faster for small n’s

4/10/13 27Complexity Analysis II

Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics

– Examine the algorithm itself, mathematically, not the
implementation

– Reason about performance as a function of n

– Be able to mathematically prove things about performance

28

• Yet, timing has its place

– In the real world, we do want to know whether
implementation A runs faster than implementation B on data
set C

– Ex: Benchmarking graphics cards

– We will do some timing in HW 2

4/10/13 Complexity Analysis II

