

Examples True or false? 1. 4+3n is O(n) 2. n+2logn is O(logn) 3. logn+2 is O(1) 4. n ⁵⁰ is O(1.1 ⁿ)	n n ⁵⁰ 1 1 2 1.1E15 True 3 7.2E23 4 1.3E30 False 5 8.9E34 6 8.1E38 False 7 1.8E42 True 8 1.4E45 9 5.6E47 10 1.0E50 	1.1 ⁿ 1.1 1.2 1.3 1.5 1.6 1.8 1.9 2.1 2.4 2.6 1.0E500 (over)
4/10/13	Complexity Analysis II	7

Intuitively		
Asymptotic Notation	Mathematics Relation	
0	≤	-
Ω	≥	=
Θ	=	_
0	<	_
ω	>	
4/10/13 Con	3 Complexity Analysis II	

