
1

Binary Search Trees

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline
• Announcements

– Assignment #2 due Fri, Oct 19 at the BEGINNING of
lecture. This is a pen and paper assignment; print nicely
or type, please.

4/12/2013 2

• Today’s Topics:
– Binary Search Trees

– Complexity Analysis (always)

cse 373 13sp - Binary Search Trees

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear relationships

• Information often contains hierarchical relationships
– File directories or folders

Moves in a game

4/12/2013 cse 373 13sp - Binary Search Trees 3

– Moves in a game
– Hierarchies in organizations

• Can build a tree to support fast searching

Tree Jargon

• root

• nodes and edges

• leaves

t hild ibli

A

4/12/2013 cse 373 13sp - Binary Search Trees 4

• parent, children, siblings

• ancestors, descendants

• subtrees

• path, path length

• height, depth

B C D

E F

More Tree Jargon

• Length of a path = number of
edges

• Depth of a node N = length of
path from root to N

A

depth=0,

height = 2

4/12/2013 cse 373 13sp - Binary Search Trees 5

• Height of node N = length of
longest path from N to a leaf

• Depth of tree = depth of
deepest node

• Height of tree = height of root

B C D

E F

depth = 2,

height=0

depth=1,

height =0

Implementation of Trees

• One possible pointer-based Implementation
– tree nodes with value and a pointer to each child

– but how many pointers should we allocate space for?

4/12/2013 cse 373 13sp - Binary Search Trees 6

• A more flexible pointer-based implementation
– 1st Child / Next Sibling List Representation

– Each node has 2 pointers: one to its first child and one to next
sibling

– Can handle arbitrary number of children

2

Arbitrary Branching

A
A

B C D Nodes

4/12/2013 cse 373 13sp - Binary Search Trees 7

B C D

E F

B C D

E F

Data

FirstChild Sibling

of same
depth

Tree Calculations
Recall: height is max number

of edges from root to a leaf

Find the height of the tree...

t

4/12/2013 88

runtime for tree of TS nodes:

cse 373 13sp - Binary Search Trees

Height(null) = -1

Height = max (height(left), height(right)) + 1

O(TS)

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

R i

A

B C

4/12/2013 9

• Representation:
D E F

HG

JI

Data

right
pointer

left
pointer

cse 373 13sp - Binary Search Trees

Binary Tree: Representation

A
right

pointer
left

pointer A

B CB
i htl ft

C
i htl ft

4/12/2013 10

D E F

right
pointer

left
pointer

right
pointer

left
pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

cse 373 13sp - Binary Search Trees

More Recursive Tree Calculations:
Binary Tree Traversals

A traversal is an order for
visiting all the nodes of a binary tree

+

*

2 4

5

4/12/2013 11

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

(an expression tree)

cse 373 13sp - Binary Search Trees

+ * 2 4 5

2 * 4 + 5

2 4 * 5 +

Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t element;

4/12/2013 12

print t.element;

traverse (t.right);

}

}

Which one is this?

cse 373 13sp - Binary Search Trees

3

ADTs Seen So Far

• Stack
– Push

– Pop

4/12/2013 13

• Queue
– Enqueue

– Dequeue

cse 373 13sp - Binary Search Trees

What are these in Java?
- add

- remove

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:

• jjgile
Jacob Gile
OH: T 12:30-1:20pm
CSE 220

• khend

Daphna Khen

insert(kedzior, ….)

4/12/2013 14

– Insert (key, value)

– Find (key)

– Remove (key)

• Java has a Map interface that has
similar operations with different
names: put, containsKey, get,

Daphna Khen

OH: Th 11:30-12:20

CSE 220

• genelkim

Gene Kim

OH: Th 4:30-5:20

CSE 220

find(genelkim)

• genelkim
Gene Kim …

cse 373 13sp - Binary Search Trees

A Modest Few Uses
• Search (databases) : phone directories or other

large data sets (genome
maps, web pages)

• Networks : Router tables

O i P bl

4/12/2013 15

• Operating systems : Page tables

• Compilers : Symbol tables

• Image Analysis : Object-feature tables

• Image Retrieval : Large image databases

Probably the most widely used ADT!

cse 373 13sp - Binary Search Trees

Implementations: Complexity

• Unsorted Linked-list

insert deletefind

For dictionary with n key/value pairs

4/12/2013 16

• Unsorted array

• Sorted array

cse 373 13sp - Binary Search Trees

Implementations
For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(1) * O(n) O(n)

• Unsorted array O(1) * O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

*Note: If we do not allow duplicates values to be inserted, we would need
to do O(n) work (a find operation) to check for a key’s existence
before insertion

4/12/2013 17cse 373 13sp - Binary Search Trees

Binary Search Tree
Data Structure

115

8

• Structural property
– each node has 2 children
– result:

• storage is small
• operations are simple
• average depth is small

4/12/2013 18

4

121062

14

13

7 9

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

So, when I store, I have to test
where to put the new node.

cse 373 13sp - Binary Search Trees

4

Are these BSTs?

84

5

4

181062

155

8

20

7

11

4/12/2013 1919

3

1171
4 20

21

11

4

181062

115

8

2015cse 373 13sp - Binary Search Trees

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)

return NULL;

if (key < root.key)
return Find(key,

t l ft)

155

10

4/12/2013 20

root.left);
else if (key > root.key)

return Find(key,
root.right);

else
return root;

}

2092

307 17

Runtime:

cse 373 13sp - Binary Search Trees

Worst Case: O(n)
Actual: O(depth)

Find in BST, Iterative
Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root left;
155

10

4/12/2013 21

root = root.left;

else

root = root.right;

}

return root;

}

2092

307 17

Runtime:
cse 373 13sp - Binary Search Trees

Insert Operation

• Insert(T: tree, X: element)

– Do a “Find” operation for X

– If X is found update (no
need to insert) 94

4/12/2013 cse 373 13sp - Binary Search Trees 22

need to insert)

– Else, “Find” stops at a NULL
pointer

– Insert Node with X there

• Example: Insert 95

10

96 99

97

Insert 95

94
94

4/12/2013 cse 373 13sp - Binary Search Trees 23

10

96 99

97
10

96 99

97

95

Can we convert Find into Insert?
Node Find(Object key,

Node root) {

while (root != NULL &&
root.key != key) {

if (k < t k)

4/12/2013 cse 373 13sp - Binary Search Trees 24

if (key < root.key)
root = root.left;

else
root = root.right;

}

return root;
}

5

Can we convert Find into Insert?
The idea (incomplete)

while (root != NULL &&
root.key != key) {

if (key < root.key)
if t l ft ! ll

4/12/2013 cse 373 13sp - Binary Search Trees 25

if root.left != null
root = root.left;
else root.left = new

else
if root.right != null
root = root.right;
else root.right = new

}

Try some Inserts in a BST

2092

155

10
Insert(13)
Insert(8)
Insert(31)

13

4/12/2013 26

307 17

Runtime:

cse 373 13sp - Binary Search Trees

8
31

O(depth)

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an

initially empty BST.
Runtime depends on the order!

– in given order

4/12/2013 27

– in reverse order

– median first, then left median, right median, etc.

cse 373 13sp - Binary Search Trees

In General
• Binary Search Trees are not balanced.

• The depth can range from depth n for an n node
tree in the worst case, in which case the tree is just
a linear list

T h b hi h i f l b l d• To the best case which is a perfectly balanced tree,
in which case the depth is log2n.

4/12/2013 cse 373 13sp - Binary Search Trees 28

FindMin/FindMax are Easy

• Find minimum

155

10

4/12/2013 29

• Find maximum
2092

307 17

cse 373 13sp - Binary Search Trees

Delete Operation
• Delete is a bit trickier than insert…Why?

• Suppose you want to delete 10

• Strategy:
– Find 10

94

10 97

4/12/2013 cse 373 13sp - Binary Search Trees 30

– Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

5 24

11

17

6

Delete Operation

• Problem: When you delete a node,
what do you replace it by?

• Solution:
– If it has no children, by NULL

If it h 1 hild b th t hild

94

10 97

4/12/2013 cse 373 13sp - Binary Search Trees 31

– If it has 1 child, by that child
– If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)

5 24

11

17

Delete “5” - No children

Find 5 node

94

10 97

94

10 97

4/12/2013 cse 373 13sp - Binary Search Trees 32

Then Free

the 5 node and

NULL the

pointer to it

5 24

11

17

5 24

11

17

Delete “24” - One child

Find 24 node 94

10 97

94

10 97

4/12/2013 cse 373 13sp - Binary Search Trees 33

Then Free

the 24 node and

replace the

pointer to it with

a pointer to its

child

5 24

11

17

5 24

11

17

Delete “10” - two children

Find 10,

Copy the smallest

value in

94

10 97

94

11 97

4/12/2013 cse 373 13sp - Binary Search Trees 34

right subtree

into the node

Then (recursively)

Delete node with

smallest value

in right subtree

Note: it cannot

have two children

5 24

11

17

5 24

11

17

Then Delete “11” - One child

Remember

11 node

94

11 97

94

11 97

4/12/2013 cse 373 13sp - Binary Search Trees 35

Then Free

the 11 node and

replace the

pointer to it with

a pointer to its

child

5 24

11

17

5 24

11

17

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler
+ physical deletions done in batches
+ dd j t fli d l t d fl

10

4/12/2013 36

+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

307 17

cse 373 13sp - Binary Search Trees

7

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is Θ(log n)
– Worst case height is Θ(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

4/12/2013 37

lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is Θ(log n) – strong enough!

2. is easy to maintain – not too strong!

cse 373 13sp - Binary Search Trees

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

4/12/2013 38

2. Left and right subtrees of the root
have equal height

cse 373 13sp - Binary Search Trees

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4/12/2013 39

4. Left and right subtrees of every node
have equal height

cse 373 13sp - Binary Search Trees

