Binary Search Trees

CSE 373
Data Structures & Algorithms
Linda Shapiro
Spring 2013

Today’s Outline

* Announcements

— Assignment #2 due Fri, Oct 19 at the BEGINNING of
lecture. This is a pen and paper assignment; print nicely
or type, please.

» Today’s Topics:

— Binary Search Trees
— Complexity Analysis (always)

4/12/2013 cse 373 13sp - Binary Search Trees 2

Why Do We Need Trees?

* Lists, Stacks, and Queues are linear relationships

* Information often contains hierarchical relationships
— File directories or folders
— Moves in a game
— Hierarchies in organizations

» Can build a tree to support fast searching

4/12/2013

cse 373 13sp - Binary Search Trees 3

Tree Jargon

* root

* nodes and edges

* leaves

* parent, children, siblings
« ancestors, descendants

* subtrees

* path, path length
* height, depth

4/12/2013 cse 373 13sp - Binary Search Trees 4

+ Length of a path = number of

edges

+ Depth of a node N = length of
path from root to N

+ Height of node N = length of
longest path from N to a leaf

* Depth of tree = depth of
deepest node

+ Height of tree = height of root

4/12/2013

More Tree Jargon

depth=0,
height =

height =0|
/@ eight

depth =2,

ese 373 13sp - Binary Search Trees height=0 5

Implementation of Trees

* One possible pointer-based Implementation
— tree nodes with value and a pointer to each child
— but how many pointers should we allocate space for?
+ A more flexible pointer-based implementation
— 15t Child / Next Sibling List Representation
— Each node has 2 pointers: one to its first child and one to next
sibling
— Can handle arbitrary number of children

4/12/2013 cse 373 13sp - Binary Search Trees 6

Arbitrary Branching

FirstChild ESihling

4/12/2013 cse 373 13sp - Binary Search Trees 7

Tree Calculations

Recall: height is max number
of edges from root to a leaf

Find the height of the tree...

Height(null) = -1

Height = max (height(left), height(right)) + 1
runtime for tree of TS nodes: O(TS)

4/12/2013 cse 373 13sp - Binary Search Trees

Binary Trees
* Binary tree is
— aroot
— left subtree (maybe empty) @
— right subtree (maybe empty)

© ®© ®
Data
left | right @ @

pointer | pointer

4/12/2013 cse 373 13sp - Binary Search Trees 9

* Representation:

Binary Tree: Representation

A

left [right
pointepointer G’

® ©
® ® ®

D E
left |right left [right left |right
pointepointes ointepointey i i
4/12/2013 cse 31313 - Binkearch Trees 10

More Recursive Tree Calculations:
Binary Tree Traversals (9

A traversal is an order for OO
visiting all the nodes of a binary tree

(an expression tree)
+%245

Three types:

* Pre-order: Root, left subtree, right subtree
* In-order: Left subtree, root, right subtree 2 *4+5

» Post-order: Left subtree, right subtree, root 24*5+

4/12/2013 cse 373 13sp - Binary Search Trees 1

Traversals

void traverse(BNode t){
if (t = NULL)
traverse (t.left);
print t.element;
traverse (t.right);
}
}
Which one is this?

4/12/2013 cse 373 13sp - Binary Search Trees 12

ADTs Seen So Far

» Stack
— Push
— Pop
* Queue
— Enqueue , . . - add
b a What are these in Java?
- Pequeue - remove
4/12/2013 cse 373 13sp - Binary Search Trees 13

The Dictionary ADT

¢ Data: + igile
Jacob Gile
— asetof . . . OH: T 12:30-1:20pm
(key, value) pairs insert(kedzior, ...) = cgE 220
* Operations: * khend
— Insert (key, value) Daphna Khen
~ Find (key) find(genelkim) OH: Th 11:30-12:20
«———— CSE220
— Remove (key) - genelkim
Gene Kim .
* genelkim
Gene Kim
« Java has a Map interface that has OH: Th 4:30-5:20
similar operations with different CSE 220
names: put, containsKey, get,
4/12/2013 cse 373 13sp - Binary Search Trees 14

A Modest Few Uses

» Search (databases) : phone directories or other
large data sets (genome
maps, web pages)

* Networks : Router tables

¢ Operating systems : Page tables

» Compilers : Symbol tables

« Image Analysis : Object-feature tables

* Image Retrieval : Large image databases

Probably the most widely used ADT!

Implementations: Complexity

For dictionary with n key/value pairs

insert find delete
¢ Unsorted Linked-list
» Unsorted array
 Sorted array
4/12/2013 cse 373 13sp - Binary Search Trees 16

4/12/2013 cse 373 13sp - Binary Search Trees 15
Implementations
For dictionary with n key/value pairs
insert find delete
* Unsorted linked-list o) * 0O o(n)
* Unsorted array Oo(1) * O(n) O(n)
+ Sorted linked list O(n) O(n) Oo(n)
* Sorted array O(n) O(logn) O(n)

*Note: If we do not allow duplicates values to be inserted, we would need
to do O(n) work (a find operation) to check for a key’s existence
before insertion

4/12/2013 cse 373 13sp - Binary Search Trees 17

Binary Search Tree
Data Structure

« Structural property
— each node has < 2 children
result:
« storage is small
« operations are simple
« average depth is small

 Order property
— all keys in left subtree smaller
than root’s key
— all keys in right subtree larger
than root’s key
— result: easy to find any given key

So, when I store, I have to test
where to put the new node.

4/12/2013 cse 373 13sp - Binary Search Trees 18

Are these BSTs? ®

4/12/2013

Find in BST, Recursive

Node Find(Object key,
Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,
root.left);
else if (key > root.key)
return Find(key,
root.right);

else
return root;

Runtime:

Worst Case: O(n)

Actual: O(depth)

4/12/2013 cse 373 13sp - Binary Search Trees

Find in BST, Iterative

Node Find(Object key,
Node root) {

while (root != NULL &&
root.key != key) {
if (key < root.key)
root = root.left;
else
root = root.right;

3

return root;

b

Runtime:

4/12/2013 cse 373 13sp - Binary Search Trees

Insert Operation

= Insert(T: tree, X: element)
— Do a “Find” operation for X l
— If X is found - update (no

need to insert)

— Else, “Find” stops at a NULL VN J
pointer @
— Insert Node with X there l @
» Example: Insert 95

4/12/2013 cse 373 13sp - Binary Search Trees

Insert 95

4/12/2013 cse 373 13sp - Binary Search Trees

Can we convert Find into Insert?

Node Find(Object key,
Node root) {

while (root = NULL &&
root._key = key) {
if (key < root.key)
root = root.left;
else

root = root.right;

}

return root;

}

4/12/2013 cse 373 13sp - Binary Search Trees

Can we convert Find into Insert?
The i1dea (incomplete)

while (root !'= NULL &&
root.key != key) {
if (key < root.key)
if root.left = null
root = root.left;
else root.left = new
else
if root.right !'= null
root = root.right;
else root.right = new

4/12/2013 cse 373 13sp - Binary Search Trees 25

Try some Inserts in a BST

Insert(13)
Insert(8)
Insert(31)

Runtime: O(depth)

4/12/2013 cse 373 13sp - Binary Search Trees 26

BuildTree for BST

» Suppose keys 1,2, 3,4,5,6,7,8,9 are inserted into an
initially empty BST.
Runtime depends on the order!
— in given order

— inreverse order

— median first, then left median, right median, etc.

4/12/2013 cse 373 13sp - Binary Search Trees 27

In General

* Binary Search Trees are not balanced.

*+ The depth can range from depth n for an n node
tree in the worst case, in which case the tree is just
a linear list

* To the best case which is a perfectly balanced tree,
in which case the depth is log,n.

4/12/2013 cse 373 13sp - Binary Search Trees 28

FindMin/FindMax are Easy

¢ Find minimum

* Find maximum

4/12/2013 cse 373 13sp - Binary Search Trees 29

Delete Operation

 Delete is a bit trickier than insert... Why?

* Suppose you want to delete 10

» Strategy:

~ Find 10 @

— Delete the node containing 10

* Problem: When you delete a node, e @
what do you replace it by?

4/12/2013 cse 373 13sp - Binary Search Trees 30

Delete Operation

* Problem: When you delete a node,
what do you replace it by? @
* Solution:
— Ifiit has no children, by NULL @ @

— Ifit has 1 child, by that child

— Ifit has 2 children, by the node with o @
the smallest value in its right subtree b
(the successor of the node)

4/12/2013 cse 373 13sp - Binary Search Trees 31

Delete “5” - No children

@ %
Find 5 node
WO @
@ —_ B{ @ Then Free

the 5 node and

G ° NULL the
Q G pointer to it

4/12/2013 cse 373 13sp - Binary Search Trees 32

Delete “24” - One child

Find 24 node @

Then Free
the 24 node and
replace the

pointer to it with

a pointer to its

4/12/2013 cse 373 13sp - Binary Search Trees . 33
child

Delete “10” - two children

right subtree Then (recursively)

Find 10, @ @
Copy the smallest AN

value in @ @ @
into the node - ° Delete node with
smallest value

in right subtree

@ @ Note: it cannot

4/12/2013 cse 373 13sp - Binary Search Trees h(,“ e two C HIA]dI"CH

Then Delete “11” - One child

D) \

Remember
11 node m @ 0 @
O® -0 @

Then Free
the 11 node and

replace the

pointer to it with
a pointer to its

411212013 cse 373 13sp - Binary Search Trees child 35

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler

physical deletions done in batches

some adds just flip deleted flag

extra memory for deleted flag
many lazy deletions slow finds
some operations may have to be
modified (e.g., min and max)

4/12/2013 cse 373 13sp - Binary Search Trees 36

Balanced BST

Observation
¢ BST: the shallower the better!
* ForaBST with n nodes
— Average height is ©(log n)
Worst case height is ©(n)
* Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is @(logn) — strong enough!
2. is easy to maintain — not too strong!
41212013 cse 373 13sp - Binary Search Trees

Potential Balance Conditions

Left and right subtrees of the root
have equal number of nodes

Left and right subtrees of the root
have equal height

4/12/2013 cse 373 13sp - Binary Search Trees

Potential Balance Conditions

Left and right subtrees of every node
have equal number of nodes

Left and right subtrees of every node
have equal height

4/12/2013 cse 373 13sp - Binary Search Trees

