
1

Splay Trees

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
› Assignment #2 due Fri, April 19 at the

BEGINNING of lecture

4/17/2013 2

• Today’s Topics:
› Review AVL Trees (Weiss 4.4)

› Splay Trees (Weiss 4.5)

Splay Trees

AVL Trees

• Keep them balanced!

• 4 rebalancing operations
› left-left› left-left

› right-right

› right-left

› left-right

4/17/2013 Splay Trees 3

single rotation

double rotation

AVL Practice

• left-left

k2

k1

k1

k2

YX

Z

ZYX

15

• Which is the node to rebalance?
• Where are k1 and k2?

4/17/2013 Splay Trees 4

18

3

6

8

7

17

16

k2

k1

X Y=null

Z=null

AVL Practice

• left-left

k2

k1

k1

k2

YX

Z

ZYX

15

• Which is the node to rebalance?
• Where are k1 and k2?

15

4/17/2013 Splay Trees 5

18

3

6

8

7

17

16

k2

k1

6

3 8

7

18

17

16

k1

k2

X

X

AVL Practice

• right-left double

k2

k1 k2

k3

D

15

• Which is the node to rebalance?
• Where are k1 k2, and k3?

k1

A

B

k3

C

k1

A B C D

4/17/2013 Splay Trees 6

20

40

6

18

17

k2

k3A

C

D

B=null

2

AVL Practice

• right-left double

k2

k1 k2

k3

D

15
k1

17
k2

A

B

k3

C

k1

A B C D

4/17/2013 Splay Trees 7

20

40

6

18

17

k2

15

6 40

20

18

k3k3A

C

D

k1

B=null

A C D

Fun Applet for Viewing

• http://webdiis.unizar.es/asignaturas/ED
A/AVLTree/avltree.html

4/17/2013 Splay Trees 8

Compexity

• What is the complexity of a single
rotation?

• What is the complexity of a double y
rotation?

• They both take a constant amount of
time.

• But that constant can have an effect.
4/17/2013 Splay Trees 9

Complexity

• What is the complexity of adding a new
node?

1 find the place to add O(logn)1.find the place to add

2.link it in

3.go upward checking for imbalance

4.possibly do a rotation

4/17/2013 Splay Trees 10

O(1)

O(logn)

O(1)

AVL Trees

• Always balanced
› rebalanced after each insert

› rebalanced after each delete› rebalanced after each delete

• Even if not badly unbalanced

• So, what else can we do?

4/17/2013 Splay Trees 11

Self adjusting Trees

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a

4/17/2013 Splay Trees 12

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
› Tree adjusts after insert, delete, or find

3

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time

› Data most recently accessed is near the root.
(i i l f l lit 80 20 “ l ”)

4/17/2013 Splay Trees 13

(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying”

operations to bring X to the root of the tree.

› Do this in a way that leaves the tree more
balanced as a whole

• Let X be a non-root node with 2 ancestors.
• P is its parent node.
• G is its grandparent node.

Splay Tree Terminology

4/17/2013 Splay Trees 14

P

G

X

G

P

X

G

P

X

G

P

X

Zig-Zig and Zig-Zag

4G
zig-zig

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

4/17/2013 Splay Trees 15

G 5

1 P zig-zag

G

P 5

X 2

X

1. Helpful if nodes contain a parent pointer.

Splay Tree Operations

parent

rightleft
element P = Parent

G = Grandparent

4/17/2013 Splay Trees 16

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

p

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)
root

4/17/2013 Splay Trees 17

• ZigFromLeft moves R to the top faster access
next time

ZigFromLeft

Zig at depth 1

• Suppose Q is now accessed using Find

root

4/17/2013 Splay Trees 18

• ZigFromRight moves Q back to the top

ZigFromRight

4

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

4/17/2013 Splay Trees 19

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

4/17/2013 Splay Trees 20

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

Decreasing depth -
"autobalance"

4/17/2013 Splay Trees 21

Find(T) Find(R)

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
S l t t d it (t th d d

4/17/2013 Splay Trees 22

› Splay x to root and remove it. (note: the node does
not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left

subtree.

Example Insert

• Inserting in order 1,2,3,…,8

• Without self-adjustment
1

4/17/2013 Splay Trees 23

1

2

3

4

5

6

7

8

O(n2) time for n Insert

Why?

With Self-Adjustment

1

ZigFromRight

1

4/17/2013 Splay Trees 24

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

2

3

5

With Self-Adjustment

ZigFromRight2

34

4
3

4

4/17/2013 Splay Trees 25

1
2

1

3

With Self-Adjustment

ZigFromRight

n-1

n
n-1

n

4/17/2013 Splay Trees 26

2

1

2

1

Each Insert takes O(1) time therefore O(n) time for n Insert!!
But the resulting tree is linear till you do a find.

Example Deletion

10

155

201382

10

15

5

8

2 96

splay (Zig-Zag)

4/17/2013 Splay Trees 27

96
2013

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
Splay (zig)

attach

More of the Applet

• http://webdiis.unizar.es/asignaturas/ED
A/AVLTree/avltree.html

4/17/2013 Splay Trees 28

Remember to switch the applet to splay trees!

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items. (proof is difficult)

A ti d O(l) ti *

4/17/2013 Splay Trees 29

› Amortized O(log n) time. *

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the

tree.

› Items near an accessed one are pulled toward the
root.

* We don’t do amortized proofs in 373.

• Example: B-tree of order 3 has 2 or 3
children per node

Beyond Binary Search Trees:
Multi-Way Trees

13:-

4/17/2013 Splay Trees 30

• Search for 8

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

