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Splay Trees

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
› Assignment #2 due Fri, April 19 at the 

BEGINNING of lecture
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• Today’s Topics:
› Review AVL Trees (Weiss 4.4) 

› Splay Trees (Weiss 4.5)

Splay Trees

AVL Trees

• Keep them balanced!

• 4 rebalancing operations
› left-left› left-left

› right-right

› right-left

› left-right
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single rotation

double rotation

AVL Practice

• left-left
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• Which is the node to rebalance?
• Where are k1 and k2?
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• left-left
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• Which is the node to rebalance?
• Where are k1 and k2?
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AVL Practice

• right-left double

k2
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• Which is the node to rebalance?
• Where are k1 k2, and k3?
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AVL Practice

• right-left double
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Fun Applet for Viewing 

• http://webdiis.unizar.es/asignaturas/ED
A/AVLTree/avltree.html
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Compexity

• What is the complexity of a single 
rotation?

• What is the complexity of a double y
rotation?

• They both take a constant amount of 
time.

• But that constant can have an effect.
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Complexity

• What is the complexity of adding a new 
node?

1 find the place to add O(logn)1.find the place to add

2.link it in

3.go upward checking for imbalance

4.possibly do a rotation
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O(1)

O(logn)

O(1)

AVL Trees

• Always balanced
› rebalanced after each insert

› rebalanced after each delete› rebalanced after each delete

• Even if not badly unbalanced

• So, what else can we do?
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Self adjusting Trees

• Ordinary binary search trees have no balance 
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
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• Balanced trees like AVL trees enforce a 
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time 
as nodes are accessed
› Tree adjusts after insert, delete, or find
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Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time

› Data most recently accessed is near the root. 
( i i l f l lit 80 20 “ l ”)
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(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying” 

operations to bring X to the root of the tree.

› Do this in a way that leaves the tree more 
balanced as a whole

• Let X be a non-root node with  2 ancestors.
• P is its parent node.
• G is its grandparent node.

Splay Tree Terminology
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Zig-Zig and Zig-Zag

4G
zig-zig

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.
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G 5

1 P zig-zag

G

P 5

X 2

X

1. Helpful if nodes contain a parent pointer.

Splay Tree Operations

parent

rightleft
element P = Parent

G = Grandparent
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2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

p

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using 

Find)
root
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• ZigFromLeft moves R to the top faster access 
next time

ZigFromLeft

Zig at depth 1

• Suppose Q is now accessed using Find

root
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• ZigFromRight moves Q back to the top

ZigFromRight



4

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the 
opposite direction (assume R is the node that 
was accessed)
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(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

Zig-Zig operation

• “Zig-Zig” consists of two single rotations 
of the same direction (R is the node that 
was accessed)
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(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

Decreasing depth -
"autobalance"
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Find(T) Find(R)

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
S l t t d it ( t th d d
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› Splay x to root and remove it. (note: the node does 
not have to be a leaf or single child node like in 
BST delete.)  Two trees remain, right subtree and 
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left 

subtree.

Example Insert

• Inserting in order 1,2,3,…,8

• Without self-adjustment
1
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O(n2) time for n Insert

Why?

With Self-Adjustment
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With Self-Adjustment

ZigFromRight2

34

4
3

4

4/17/2013 Splay Trees 25

1
2

1

3

With Self-Adjustment

ZigFromRight

n-1

n
n-1

n

4/17/2013 Splay Trees 26

2

1

2

1

Each Insert takes O(1) time therefore O(n) time for n Insert!!
But the resulting tree is linear till you do a find.

Example Deletion
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More of the Applet

• http://webdiis.unizar.es/asignaturas/ED
A/AVLTree/avltree.html
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Remember to switch the applet to splay trees!

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N 

operations on N items. (proof is difficult)

A ti d O(l ) ti *
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› Amortized O(log n) time. *

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the 

tree.

› Items near an accessed one are pulled toward the 
root.

* We don’t do amortized proofs in 373.

• Example: B-tree of order 3 has 2 or 3 
children per node

Beyond Binary Search Trees: 
Multi-Way Trees

13:-
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• Search for 8

6:11

3  4 6  7  8 11 12 13  14 17 18
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