
1

B-Trees

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements
› Assignment #2 due Fri, April 19 (TODAY)

at the BEGINNING of lecture

4/19/2013 2

› Assignment #3 is a programming project.

• Today’s Topics:
› B-Trees (Weiss 4.7 and my own details,

which are NOT in the text)

B-Trees

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

B-Trees

4/19/2013 B-Trees 3

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between L/2 and L data records,
where L can be equal to M (default) or can be different.

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between M/2 and M children.

t M 1 k k k k

4/19/2013 B-Trees 4

› up to M-1 keys k1 k2 kM-1

Keys are ordered so that:
k1 k2 kM-1

kM-1. ki-1 kik1

Properties of B-Trees

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

4/19/2013 B-Trees 5

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 Ti ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 k1

All keys in last subtree TM kM-1

DS.B.13
B-Tree Nonleaf Node

P[1] K[1] . . . K[i-1] P[i-1] K[i] . . . K[q-1] P[q]

y z

x < K[1] K[i-1]y<K[i] K[q-1] z

x

4/19/2013 B-Trees 6

• The Ks are keys

• The Ps are pointers to subtrees.

| 4 | | 8 |

x<4 4x<8 8 x

2

DS.B.14
Detailed Leaf Node Structure (B+ Tree)

K[1] R[1] . . . K[q-1] R[q-1] Next

• The Ks are keys (assume unique).

• The Rs are pointers to records with those keys.

4/19/2013 B-Trees 7

• The Next link points to the next leaf in key order (B+-tree).

75 89 95 103 115

95 Jones Mark 19 4data record

Searching in B-trees

13:-

6:11 17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

- means empty slot

4/19/2013 B-Trees 8

6:11

3 4 6 7 8 11 12 13 14 17 18

17:

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be
accessed easily

DS.B.17
Searching a B-Tree T for a Key Value K

Find(ElementType K, Btree T) {
B = T;
while (B is not a leaf)

{
find the Pi in node B that points to

the proper subtree that K will be in;

4/19/2013 B-Trees 9

the proper subtree that K will be in;

B = Pi;
}

/* Now we’re at a leaf */
if key K is the jth key in leaf B,

use the jth record pointer to find the
associated record;

else /* K is not in leaf B */ report failure;
}

How would you search
for a key in a node?

Inserting into B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root
node

4/19/2013 B-Trees 10

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-Assume M=L=3,
so (6 7 8) is full.

DS.B.18
Inserting a New Key in a B-Tree of Order M (and L=M)

Insert(ElementType K, Btree B) {
find the leaf node LB of B in which K belongs;
if notfull(LB) insert K into LB;
else

{
split LB into two nodes LB and LB2 with

4/19/2013 B-Trees 11

p
j = (M+1)/2 keys in LB and the rest in LB2;

if (IsNull(Parent(LB)))
CreateNewRoot(LB, K[j+1], LB2);

else
InsertInternal(Parent(LB), K[j+1], LB2);

} }

K[1] R[1] . . . K[j] R[j] K[j+1] R[j+1] . . . K[M+1] R[M+1]

LB LB2

DS.B.19

Inserting a (Key,Ptr) Pair into an Internal Node

If the node is not full, insert them in the proper
place and return.

If the node is already full (M pointers, M-1 keys),
find the place for the new pair and split

4/19/2013 B-Trees 12

find the place for the new pair and split
the adjusted (Key,Ptr) sequence into two
internal nodes with

j = (M+1)/2 pointers and j-1 keys in the first,

the next key is inserted in the node’s parent,

and the rest in the second of the new pair.

3

Example of Insertions into a
B+ tree with M=3, L=2

Insertion Sequence: 9, 5, 1, 7, 3,12

9 5 | 9

1| | 5 | 9 |

| 5 | 1 2 3
| 5 | | 7 |

1| | 7 | 9 |5 | |

4

4/19/2013 B-Trees 13

1| | 5 | 9 | 1| | 7 | 9 |5 | |

| 5 | | 7 |

1| 3 | 5 | | 7 | 9 |

5

1| 3 | 5 | | 7 | | 9 | 12 |

| 5 | | 9 |

| 7 |

Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11

› Leaf underflows and can’t borrow – merge nodes, delete
t

4/19/2013 B-Trees 14

parent
• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search

› Each internal node has between M/2 and M children

4/19/2013 B-Trees 15

› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.

› Total time to find an item is O(depth*log M) = O(log N)

DS.B.22

How Do We Select the Order M?

- In internal memory, small orders, like 3 or 4
are fine.

- On disk, we have to worry about the number
f di k h h i d d

4/19/2013 B-Trees 16

of disk accesses to search the index and get
to the proper leaf.

Rule: Choose the largest M so that an internal
node can fit into one physical block of the disk.

This leads to typical M’s between 32 and 256
And keeps the trees as shallow as possible.

What are B+ Trees heavily
used for? Databases

• A relational database is conceptually a set of 2D
tables.

• The columns of a table are called attributes; they are
the keysthe keys.

• Each table has at least one primary key by which it
can be accessed rapidly.

• The rows are the different data records, each having
a unique primary key.

• B+ trees are one very common implementation for
these tables.

4/19/2013 B-Trees 17

Creating a table in SQL
create table Company

(cname varchar(20) primary key,

country varchar(20),

no_employees int,

for profit char(1));for_profit char(1));

insert into Company values ('GizmoWorks', 'USA', 20000,'y');

insert into Company values ('Canon', 'Japan', 50000,'y');

insert into Company values ('Hitachi', 'Japan', 30000,'y');

insert into Company values('Charity', 'Canada', 500,'n');

4/19/2013 B-Trees 18

4

Queries

• select * from Company;

• select cname from Company

create table Company
(cname varchar(20) primary key,
country varchar(20),
no_employees int,
for_profit char(1));

select cname from Company
where no_employees > 50;

• select cname, country from Company
where no_employees < 50 AND

for_profit = “y”;
4/19/2013 B-Trees 19

Another Table

create table Product

(pname varchar(20) primary key,

price floatprice float,

category varchar(20),

manufacturer varchar(20) references
Company);

4/19/2013 B-Trees 20

A JOIN query uses both
tables

SELECT DISTINCT cname FROM Product P1, Product
P2, Company

WHERE country = 'Japan'

AND P1 category = 'gadget'AND P1.category = 'gadget'

AND P2.category = 'photography'

AND P1.manufacturer = cname

AND P2.manufacturer = cname;

4/19/2013 B-Trees 21

Requires retrievals according to country attribute and restricted to
category attribute and then further constrained.....
Needs a database course.

Summary of Search Trees
• Problem with Binary Search Trees: Must keep tree balanced to

allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced

• Splay trees: Repeated Find operations produce balanced trees

4/19/2013 B-Trees 22

Splay trees: Repeated Find operations produce balanced trees

• Multi-way search trees (e.g. B-Trees):

› More than two children per node allows shallow trees; all
leaves are at the same depth.

› Keeping tree balanced at all times.

› Excellent for indexes in database systems.

