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Directed Graph Algorithms

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements:
› HW 4: paper and pencil assignment is 

due Friday, May 17 in class.
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• Today’s Topics: 
› Graphs (Weiss 9.2, 9.3, 10.34)

Digraphs

Topological Sort

311143
312

332

Problem: Find an order in
which all these courses can 

142
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332

341370

378

401

421

be taken.

Example: 142  143  378
 370  311  341  312
 332  421  401

In order to take a course, you must 
take all of its prerequisites first

Given a digraph G = (V, E), find a linear ordering of 
its vertices such that: 

for any edge (v, w) in E, v precedes w in the ordering

Topological Sort
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A

B
C Any linear ordering in which

all the arrows go to the right

Topo sort - good example
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F

D E

EA DFB C

is a valid solution

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

A

B
C

Any linear ordering in which
an arrow goes to the left

Topo sort - bad example
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F

D E

DA EFB C

g
is not a valid solution

NO!
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Paths and Cycles

• Given a digraph G = (V,E), a path is a 
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for 1 < i < k
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› path length = number of edges in the path

› path cost = sum of costs of each edge 

• A path is a cycle if :
› k > 1; v1 = vk 

• G is acyclic if it has no cycles.

Only acyclic graphs can be 
topo. sorted

• A directed graph with a cycle cannot be 
topologically sorted.

B
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Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

Topo sort algorithm - 1
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D E

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

Topo sort algorithm - 1a
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A

B
C

D
Example of a cyclic graph

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

Select

Topo sort algorithm - 1b
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Select B

Step 2: Delete this vertex of in-degree 0 and all 
its outgoing edges from the graph. Place it in the 
output.

Topo sort algorithm - 2

5/15/13 Digraphs 12

A

B
C

F

D E

A



3

B

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done
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B

Select B.  Copy to sorted list.  Delete B and its edges.

B
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A
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F

D E

B

Select C.  Copy to sorted list.  Delete C and its edges.

C
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A

C

F

D E

B C

Select D.  Copy to sorted list.  Delete D and its edges.

D
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AF

D E

B C D

Select E.  Copy to sorted list.  Delete E and its edges.
Select F.  Copy to sorted list.  Delete F and its edges.

E, F
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AF

E

B C D E F

Done
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F
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A B C D E F
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D E
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A

B
C 2 41

2

Assume adjacency list
representation

Implementation
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6A B C D E F
1   2   3   4   5   6Translation

array
value next

0

1

Calculate In-degrees

2 4
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AD
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0

2
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1In-Degree 
array; or add a 
field to array A

5

543

4

5

6

Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do 

x := A[i];
while x  null do
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D[x.value] := D[x.value] + 1;
x := x.next;

endwhile
endfor

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

Maintaining Degree 0 Vertices

0 2 41

2

AD
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After each vertex is output, when updating In-Degree array, 
enqueue any vertex whose In-Degree becomes zero

Queue 6 2

dequeue enqueue

Topo Sort using a Queue 
(breadth-first)

0 2 41

AD
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1Output

q enqueue
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Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the 

queue:
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queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree 

became zero

4. If all vertices are output then success, 
otherwise there is a cycle.
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Some Detail

Main Loop
while notEmpty(Q) do

x := Dequeue(Q)
Output(x)
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Output(x)
y := A[x];
while y  null do

D[y.value] := D[y.value] – 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y := y.next;

endwhile
endwhile

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)

• Initialize Queue with In-Degree 0 vertices: O(|V|)

• Dequeue and output vertex:

|V| i h k l O(1) d d
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› |V| vertices, each takes only O(1) to dequeue and 
output: O(|V|) 

• Reduce In-Degree of all vertices adjacent to a vertex 
and Enqueue any In-Degree 0 vertices:

› O(|E|)   

• For input graph G=(V,E) run time  =  O(|V| + |E|)

› Linear time!

After each vertex is output, when updating In-Degree array, 
push any vertex whose In-Degree becomes zero

Stack 2 6

pop push

Topo Sort using a Stack 
(depth-first)

0 2 41

AD
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Topological Sort

• Does the resultant ordering change with 
the use of a stack instead of a queue?

Yes, the ordering may be different, but still correct.g y

• Does the time complexity change with 
the use of a stack instead of queue?

No, both are equally efficient for insertion and deletion.
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Shortest Path Problems
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost
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Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5

cost(p) = 11

Shortest Path Problems

• Given a graph G = (V, E) and a “source” vertex s
in V, find the minimum cost paths from s to every 
vertex in V

• Many variations:
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Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights 
› etc
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Why study shortest path 
problems?

• Traveling on a budget: What is the cheapest 
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
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› Vertices are routers and edges are network links with 
different delays.  What is the routing path with 
smallest total delay?

• Shipping: Find which highways and roads to 
take to minimize total delay due to traffic

• etc.

Unweighted Shortest Path

Problem: Given a “source” vertex s in an unweighted 
directed graph 

G = (V,E), find the shortest path from s to all vertices in 
G
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E

Source

Only interested

in path lengths

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices 
that can be reached using 0, 1, 2, 3, …, N-1 
edges  (works even for cyclic graphs!)
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Breadth-First Search Alg.

• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once 

// it ’t b d i
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// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

Example: Shortest Path length

A B F H
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C
D

G

E

0

Queue Q = C

Example (ct’d)

A B F H
1
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C
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0

Queue Q = A D E

1

1

Previous
pointer

Indicates the vertex is marked
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Example (ct’d)

A B F H
1

2
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Q = D E B
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1

Example (ct’d)

A B F H
1

2

5/15/13 Digraphs 38

C
D

G

E

0

Q = B G

1

1
2

Example (ct’d)

A B F H
1

2 3 4
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Example (ct’d)

A B F H
1

2 3 4
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Nothing left to do all marked. 
Shortest paths found from every vertex to C.

What if edges have weights?

• Breadth First Search does not work anymore 
› minimum cost path may have more edges than 

minimum length path
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Shortest path (length)
from C to A:
CA (cost = 9)

Minimum Cost 
Path = CEDA
(cost = 8)

Dijkstra’s Algorithm for 
Weighted Shortest Path

• Classic algorithm for solving shortest 
path in weighted graphs (without 
negative weights)
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• A greedy algorithm (irrevocably makes 
decisions without considering future 
consequences)

• Each vertex has a cost for path from 
initial vertex
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Basic Idea of Dijkstra’s 
Algorithm 

• Find the vertex with smallest cost that has not 
been “marked” yet.

• Mark it and compute the cost of its neighbors.
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• Do this until all vertices are marked.

• Note that each step of the algorithm we are 
marking one vertex and we won’t change our 
decision: hence the term “greedy” algorithm


