Directed Graph Algorithms

CSE 373
Data Structures \& Algorithms
Linda Shapiro
Spring 2013

Today's Outline

- Announcements:
> HW 4: paper and pencil assignment is due Friday, May 17 in class.
- Today's Topics:

Graphs (Weiss 9.2, 9.3, 10.34)

Topological Sort

Topological Sort

Given a digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

(F)

5/15/13
Digraphs
4
4

Paths and Cycles

- Given a digraph $G=(V, E)$, a path is a sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ such that: > $\left(v_{i}, v_{i+1}\right)$ in E for $1 \leq i<k$
, path length = number of edges in the path > path cost = sum of costs of each edge
- A path is a cycle if :
, $k>1 ; v_{1}=v_{k}$
- G is acyclic if it has no cycles.

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
-The "in-degree" of these vertices is zero

5/15/13
Digraphs
9

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges

- Select one such vertex

5/15/13
Digraphs
11

Only acyclic graphs can be topo. sorted

- A directed graph with a cycle cannot be topologically sorted.

(F)

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges - If no such vertices, graph has only cycle(s) (cyclic graph)

- Topological sort not possible - Halt.

5/15/13

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

5/15/13
Digraphs

Calculate In-degrees

Topological Sort Algorithm

1. Store each vertex's In-Degree in an array D
2. Initialize queue with all "in-degree=0" vertices
3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.

5/15/13
Digraphs
24

Some Detail

```
    Main Loop
    while notEmpty(Q) do
        x := Dequeue(Q)
        Output(x)
        y := A[x];
        while y f null do
            D[y.value] := D[y.value] - 1;
            if D[y.value] = 0 then Enqueue(Q,y.value);
            y := y.next;
        endwhile
    endwhile

\section*{Topological Sort Analysis}
- Initialize In-Degree array: \(\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)\)
- Initialize Queue with In-Degree 0 vertices: \(\mathrm{O}(|\mathrm{V}|)\)
- Dequeue and output vertex:
, \(|\mathrm{V}|\) vertices, each takes only \(\mathrm{O}(1)\) to dequeue and output: \(\mathrm{O}(|\mathrm{V}|)\)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
, \(\mathrm{O}(|\mathrm{E}|)\)
- For input graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\) run time \(=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)\) , Linear time!
5/15/13
Digraphs
26


\section*{Shortest Path Problems}
- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
, Path length is the unweighted path cost


\section*{Shortest Path Problems}
- Given a graph \(G=(V, E)\) and a "source" vertex \(s\) in \(V\), find the minimum cost paths from \(s\) to every vertex in \(V\)
- Many variations:
, unweighted vs. weighted
, cyclic vs. acyclic
> pos. weights only vs. pos. and neg. weights
, etc

5/15/13
Digraphs
30

\section*{Why study shortest path} problems?
- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
, Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.

\section*{Unweighted Shortest Path}

Problem: Given a "source" vertex \(s\) in an unweighted directed graph
\(G=(V, E)\), find the shortest path from \(s\) to all vertices in G


5/15/13
Digraphs
32

\section*{Breadth-First Search Solution}
- Basic Idea: Starting at node s, find vertices that can be reached using \(0,1,2,3, \ldots, N-1\) edges (works even for cyclic graphs!)


5/15/13
Digraphs 33

\section*{Breadth-First Search Alg.}
- Uses a queue to track vertices that are "nearby"
- source vertex is \(\mathbf{s}\)

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once // it won't be enqueued again
while queue is not empty do
\(X\) := Dequeue \((Q)\);
for each vertex \(Y\) adjacent to \(X\) do
if \(Y\) is unmarked then
Distance[Y] := Distance[X] + 1;
Previous \([\mathrm{Y}]\) := X;//if we want to record paths Enqueue (Q, Y) ; Mark(Y)
- Running time \(=\mathrm{O}(|V|+|E|)\)

5/15/13
Digraphs
34



\section*{What if edges have weights?}
- Breadth First Search does not work anymore
, minimum cost path may have more edges than minimum length path



\section*{Dijkstra's Algorithm for Weighted Shortest Path}
- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex

5/15/13
Digraphs 42

\section*{Basic Idea of Dijkstra's} Algorithm
- Find the vertex with smallest cost that has not been "marked" yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won't change our decision: hence the term "greedy" algorithm```

