
1

Directed Graph Algorithms

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements:
› HW 4: paper and pencil assignment is

due Friday, May 17 in class.

5/15/13 2

y, y

• Today’s Topics:
› Graphs (Weiss 9.2, 9.3, 10.34)

Digraphs

Topological Sort

311143
312

332

Problem: Find an order in
which all these courses can

142

5/15/13 Digraphs 3

332

341370

378

401

421

be taken.

Example: 142 143 378
 370 311 341 312
 332 421 401

In order to take a course, you must
take all of its prerequisites first

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topological Sort

5/15/13 Digraphs 4

A

B
C

F

D E

A

B
C Any linear ordering in which

all the arrows go to the right

Topo sort - good example

5/15/13 Digraphs 5

F

D E

EA DFB C

is a valid solution

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

A

B
C

Any linear ordering in which
an arrow goes to the left

Topo sort - bad example

5/15/13 Digraphs 6

F

D E

DA EFB C

g
is not a valid solution

NO!

2

Paths and Cycles

• Given a digraph G = (V,E), a path is a
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for 1 < i < k

5/15/13 Digraphs 7

› path length = number of edges in the path

› path cost = sum of costs of each edge

• A path is a cycle if :
› k > 1; v1 = vk

• G is acyclic if it has no cycles.

Only acyclic graphs can be
topo. sorted

• A directed graph with a cycle cannot be
topologically sorted.

B

5/15/13 Digraphs 8

A

B
C

F

D E

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

Topo sort algorithm - 1

5/15/13 Digraphs 9

A

B
C

F

D E

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

Topo sort algorithm - 1a

5/15/13 Digraphs 10

A

B
C

D
Example of a cyclic graph

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

Select

Topo sort algorithm - 1b

5/15/13 Digraphs 11

A

B
C

F

D E

Select B

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

Topo sort algorithm - 2

5/15/13 Digraphs 12

A

B
C

F

D E

A

3

B

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done

5/15/13 Digraphs 13

A

B
C

F

D E

B

Select B. Copy to sorted list. Delete B and its edges.

B

5/15/13 Digraphs 14

A

B
C

F

D E

B

Select C. Copy to sorted list. Delete C and its edges.

C

5/15/13 Digraphs 15

A

C

F

D E

B C

Select D. Copy to sorted list. Delete D and its edges.

D

5/15/13 Digraphs 16

AF

D E

B C D

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

E, F

5/15/13 Digraphs 17

AF

E

B C D E F

Done

A

B
C

F

5/15/13 Digraphs 18

A B C D E F

F

D E

4

A

B
C 2 41

2

Assume adjacency list
representation

Implementation

5/15/13 Digraphs 19

F

D E 5

54

32

3

4

5

6A B C D E F
1 2 3 4 5 6Translation

array
value next

0

1

Calculate In-degrees

2 4

3

1

2

AD

5/15/13 Digraphs 20

0

2

2

1In-Degree
array; or add a
field to array A

5

543

4

5

6

Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do

x := A[i];
while x null do

5/15/13 Digraphs 21

D[x.value] := D[x.value] + 1;
x := x.next;

endwhile
endfor

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

Maintaining Degree 0 Vertices

0 2 41

2

AD

5/15/13 Digraphs 22

1

2 3
6

4 5

1

0

2

2

1

5

54

32

3

4

5

6

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

Queue 6 2

dequeue enqueue

Topo Sort using a Queue
(breadth-first)

0 2 41

AD

5/15/13 Digraphs 23

1Output

q enqueue

1

2 3
6

4 5

0

0

0

1

2

1

5

54

32

3

4

5

6

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the

queue:

5/15/13 Digraphs 24

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree

became zero

4. If all vertices are output then success,
otherwise there is a cycle.

5

Some Detail

Main Loop
while notEmpty(Q) do

x := Dequeue(Q)
Output(x)

5/15/13 Digraphs 25

Output(x)
y := A[x];
while y null do

D[y.value] := D[y.value] – 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y := y.next;

endwhile
endwhile

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)

• Initialize Queue with In-Degree 0 vertices: O(|V|)

• Dequeue and output vertex:

|V| i h k l O(1) d d

5/15/13 Digraphs 26

› |V| vertices, each takes only O(1) to dequeue and
output: O(|V|)

• Reduce In-Degree of all vertices adjacent to a vertex
and Enqueue any In-Degree 0 vertices:

› O(|E|)

• For input graph G=(V,E) run time = O(|V| + |E|)

› Linear time!

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

Stack 2 6

pop push

Topo Sort using a Stack
(depth-first)

0 2 41

AD

5/15/13 Digraphs 27

1Output

p p push

1

2 3
6

4 5

0

0

0

1

2

1

5

54

32

3

4

5

6

Topological Sort

• Does the resultant ordering change with
the use of a stack instead of a queue?

Yes, the ordering may be different, but still correct.g y

• Does the time complexity change with
the use of a stack instead of queue?

No, both are equally efficient for insertion and deletion.

5/15/13 Digraphs 28

Shortest Path Problems
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost

5/15/13 Digraphs 29

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5

cost(p) = 11

Shortest Path Problems

• Given a graph G = (V, E) and a “source” vertex s
in V, find the minimum cost paths from s to every
vertex in V

• Many variations:

5/15/13 Digraphs 30

Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

6

Why study shortest path
problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:

5/15/13 Digraphs 31

› Vertices are routers and edges are network links with
different delays. What is the routing path with
smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

• etc.

Unweighted Shortest Path

Problem: Given a “source” vertex s in an unweighted
directed graph

G = (V,E), find the shortest path from s to all vertices in
G

5/15/13 Digraphs 32

A

C

B

D

F H

G

E

Source

Only interested

in path lengths

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

5/15/13 Digraphs 33

A

C

B

D

F H

G

E

Breadth-First Search Alg.

• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once

// it ’t b d i

5/15/13 Digraphs 34

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

Example: Shortest Path length

A B F H

5/15/13 Digraphs 35

C
D

G

E

0

Queue Q = C

Example (ct’d)

A B F H
1

5/15/13 Digraphs 36

C
D

G

E

0

Queue Q = A D E

1

1

Previous
pointer

Indicates the vertex is marked

7

Example (ct’d)

A B F H
1

2

5/15/13 Digraphs 37

C
D

G

E

0

Q = D E B

1

1

Example (ct’d)

A B F H
1

2

5/15/13 Digraphs 38

C
D

G

E

0

Q = B G

1

1
2

Example (ct’d)

A B F H
1

2 3 4

5/15/13 Digraphs 39

C
D

G

E

0

Q = F

1

1
2

Example (ct’d)

A B F H
1

2 3 4

5/15/13 Digraphs 40

C
D

G

E

0

Q = H

1

1
2

Nothing left to do all marked.
Shortest paths found from every vertex to C.

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

5/15/13 Digraphs 41

A

C

B

D

F H

G

E

2 3

2
1

1

4

2

1
1

93

8

3

Shortest path (length)
from C to A:
CA (cost = 9)

Minimum Cost
Path = CEDA
(cost = 8)

Dijkstra’s Algorithm for
Weighted Shortest Path

• Classic algorithm for solving shortest
path in weighted graphs (without
negative weights)

5/15/13 Digraphs 42

• A greedy algorithm (irrevocably makes
decisions without considering future
consequences)

• Each vertex has a cost for path from
initial vertex

8

Basic Idea of Dijkstra’s
Algorithm

• Find the vertex with smallest cost that has not
been “marked” yet.

• Mark it and compute the cost of its neighbors.

5/15/13 Digraphs 43

• Do this until all vertices are marked.

• Note that each step of the algorithm we are
marking one vertex and we won’t change our
decision: hence the term “greedy” algorithm

