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Today’s Outline

¢ Announcements:

e Today’s Topics:
> Graph Matching by Backtracking Tree
Search

Graph Matching

Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2)
Questions to ask:

1. Are G1 and G2 isomorphic?

2. Is G1isomorphic to a subgraph of G2?

3. How similar is G1 to G2?

4. How similar is G1 to the most similar
subgraph of G2?

Isomorphism for Digraphs

G1 is isomorphic to G2 if there is a 1-1, onto
mapping h: V1 — V2 such that (vi,vj) e E1iff (h(vi), h(vj)) € E2.
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Find an isomorphism h: {1,2,3,4,5} — {a,b,c,d,e}.
Check that the condition holds for every edge.

Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d

Isomorphism for Digraphs

G1is isomorphic to G2 if there is a 1-1, onto
mapping h: V1 — V2 such that (vi,vj) e ELiff ( h(vi), h(vj) ) € E2
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Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d
(1,2) € E1 and (h(1),h(2))=(b,e) € E2.

(2,1) e E1 and (e,b) € E2.

(2,5) e El and (e,d) € E2.

(3,1) e El1 and (c,b) € E2.

(3,2) e El and (c,e) € E2. 5

Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there
is a 1-1 mapping h: V1 — V2 such that (vi,vj) e E1 = (h(vi), h(vj)) e E2.
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Isomorphism and subgraph isomorphism
are defined similarly for undirected graphs.

In this case, when (vi,vj) € E1, either
(vi,vj) or (vj,vi) can be listed in E2, since
they are equivalent and both mean {vi,vj}. 6




Subgraph Isomorphism for Graphs

G1is isomorphic to a subgraph of G2 if there
is a 1-1 mapping h: V1 — V2 such that {vi,vj} e E1 = { h(vi), h(vj) } € E2.

G1 G2
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Because there are no directed edges, there are more possible mappings.
1

(shown on graph)
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Graph Matching Algorithms:
Subgraph Isomorphism for Digraph

Given model graph M = (VM,EM)
data graph D = (VD,ED)

Find 1-1 mapping h:VM — VD

satisfying (vi,vj) e EM = ((h(vi),h(vj)) € ED.

Method: Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

M
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Treesearch for Subgraph Isomorphism in Digraphs

procedure Treesearch(VM, VD, EM, ED, h) {

v = first(VM);
foreachw e VD {
h'=hu{(vw)} /ladd to mapping
OK = true;
for each edge (vi,vj) in EM (with vi < vj for
if one of vi or vj is v and the other undirected graphs)
has been assigned a value in h’
if ((h’(vi),h’(vj)) is NOTinED)
{OK = false; break;};

ifOK {
VM = VM —v; /Iremove from set
VD' =VD -w
if isempty(VM’) output(h’);
else Treesearch(VM',VD',EM,ED,h’) 10
11}

Method: Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

U
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=123} (3D VD:{a,b,c,d,e)
EM ={(1,2),(2,3),(3,2)} ED={(a.e),(b,a),t:¢),(c,d),(d,c),(d,e).(e,e)}

1; w =a; h'={(1,a)}; no edges can be checked yet.
2;w=h;h"={(1,a), (2,b)}; (1,2) € EM, but (a,b) not € ED; OK = false.
w=c; h'={(1,a), (2,c)}; (1,2) € EM, but (a,c) notin ED; OK = false.
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Nothing works for vertex 2 when (1,a) is in h.

The tree search comes back from the recursive call, returning back to v=1.

v=1; w =b; h' = {(1,b)}; no edges can be checked yet.

v=2;w=a; h'={(1,b),(2,a)}; (1,2) € EM and (b,a) € ED, so OK stays true

v=3; w = ¢; h’'={(1,b),(2,a);(3,c)}; (2,3) € EM but (a,c) not € ED; OK = false
w =d and w = e also fail, so eventually v=3 fails, and v=2 with w=a fails

Method: Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

M D
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wm=(1,23} (3 VD:{a,b,c,d,e}
EM ={(1.2),(2,3).3.2)} ED={(a,e),(b,a),t6:€),(c,d),(d,c),(d,e),(e,e)}

v=1; w =b; h' = {(1,b)}; no edges can be checked yet.

v=2; w=c; h'={(1,b),(2,c)}; (1,2) € EM and (b,c) € ED, so OK stays true

v=3; w=a; h'={(1,b),(2,c),(3,a)}; (2,3) € EM but (c,a) not € ED; OK = false
w=d; h'={(1,b),(2,),(3,d)}; (2,3) € EM and (c,d) € ED, so OK

(3.2) « EM and (d,c) < ED, so OK

We've used up all of VM, so output the final mapping {(1,b),(2,c),(3,d)}
12




Similar Digraphs

Sometimes two graphs are close to isomorphic, but have a few “errors.
Let h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5) = d.

G1 G2
P 2> Ca (b
«— El ¢

Cao 50 Cdo CeD
1,2) (be) ;
21 (eb) The mapping h has 2 errors.

X (c,b) (c,b) € G2, but (3,1) ¢ G1
(4,5) (ad)
(2,5 (ed)
32 X (3,2) € G1, but (c,e) ¢ G2

(34) (c.a) 1

Error of a Mapping

Intuitively, the error of mapping h tells us

- how many edges of G1 have no corresponding edge in G2 and

- how many edges of G2 have no corresponding edge in G1.

Let G1=(V1,E1) and G2=(V2,E2), and let h:V1— V2 be a 1-1, onto mapping.

forward
error EF(h) = [{(vi,vj)eE1 | (h(vi),h(vj)) E2}|
edge in E1  corresponding edge not in E2
backward o 4
error EB(h) = [{(vi,vj)eE2 | (h (vi),h (vj))2E1}|
edge in E2 corresponding edge not in E1
total error Error(h) = EF(h) + EB(h)
relational GD(G1,G2) = min Error(h)
distance for all 1-1, onto h:V1— V2
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Branch-and-Bound Tree Search

Keep track of the least-error mapping.
™M D
QA r— a CD\ D
map_err =0
bound_err = 99999

map_err =0

map_err = 1 “ \ ap_err =0
Gb > 25> 2> &T5
/ X X 1
CBeo x (3a> GBe 0
map_err =1

map_err =0; bound_err=1 15

pounderr mapping = {(1b)(2.8)(3.0)}

mapping = {(1.3)(2 D)3 0}

Application of Relational Distance

. * These object models were
represented by graphs

« Their parts were the nodes.

« The 2 kinds of edges were for

— connection and parallel relations.
« Relational distance was used to

compare and cluster them.
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