

Today's Outline

- Announcements:
- Today's Topics:
, Graph Matching by Backtracking Tree Search

Graph Matching

Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2)
Questions to ask:

1. Are G1 and G2 isomorphic?
2. Is G 1 isomorphic to a subgraph of G 2 ?
3. How similar is G1 to G2?
4. How similar is G 1 to the most similar subgraph of G2?

Isomorphism for Digraphs

G1 is isomorphic to $G 2$ if there is a 1-1, onto
mapping $h: V 1 \rightarrow V 2$ such that $(v i, v j) \in E 1$ iff $(h(v i), h(v j)) \in E 2$

Answer: $h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d$
$(1,2) \in \mathrm{E} 1$ and $(\mathrm{h}(1), \mathrm{h}(2))=(\mathrm{b}, \mathrm{e}) \in \mathrm{E} 2$.
$(2,1) \in \mathrm{E} 1$ and $(\mathrm{e}, \mathrm{b}) \in \mathrm{E} 2$.
$(2,5) \in E 1$ and $(e, d) \in E 2$.
$(3,1) \in E 1$ and $(c, b) \in E 2$.
$(3,2) \in E 1$ and $(c, e) \in E 2$.
5

Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there
is a 1-1 mapping $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ such that $(\mathrm{vi}, \mathrm{vj}) \in \mathrm{E} 1 \Rightarrow(\mathrm{~h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{E} 2$.

G2

Isomorphism and subgraph isomorphism are defined similarly for undirected graphs

In this case, when (vi,vj) E 1 , either
(vi,vj) or (vj,vi) can be listed in E2, since
they are equivalent and both mean $\{\mathrm{vi}, \mathrm{vj}\}$.

Method: Recursive Backtracking Tree Search (Order is depth first, leftmost child first.)

$$
v=1 ; w=a ; h^{\prime}=\{(1, a)\} ; \text { no edges can be checked yet. }
$$ $v=2 ; w=b ; h^{\prime}=\{(1, a),(2, b)\} ;(1,2) \in E M$, but (a, b) not $\in E D ; O K=$ false. $w=c ; h^{\prime}=\{(1, a),(2, c)\} ;(1,2) \in E M$, but (a, c) not in ED; OK = false.

Nothing works for vertex 2 when $(1, a)$ is in h.
The tree search comes back from the recursive call, returning back to $\mathrm{v}=1$. $\mathrm{v}=1 ; \mathrm{w}=\mathrm{b} ; \mathrm{h}^{\prime}=\{(1, \mathrm{~b})\}$; no edges can be checked yet.
$v=2 ; w=a ; h^{\prime}=\{(1, b),(2, a)\} ;(1,2) \in E M$ and $(b, a) \in E D$, so OK stays true $v=3 ; w=c ; h^{\prime}=\{(1, b),(2, a) ;(3, c)\} ;(2,3) \in E M$ but (a, c) not $\in E D ; O K=$ false $\mathrm{w}=\mathrm{d}$ and $\mathrm{w}=\mathrm{e}$ also fail, so eventually $\mathrm{v}=3$ fails, and $\mathrm{v}=2$ with $\mathrm{w}=\mathrm{a}$ fails
 .

Graph Matching Algorithms:
 Subgraph Isomorphism for Digraph

Given model graph $M=(V M, E M)$
data graph $D=(V D, E D)$
Find 1-1 mapping $\mathrm{h}: \mathrm{VM} \rightarrow \mathrm{VD}$
satisfying $(v i, v j) \in E M \Rightarrow((h(v i), h(v j)) \in E D$.

Error of a Mapping

Intuitively, the error of mapping h tells us

- how many edges of G1 have no corresponding edge in G2 and
- how many edges of G 2 have no corresponding edge in G 1 .

Let $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$, and let $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ be a 1-1, onto mapping.
forward
error
backward
error
total error
relational
distance
$E F(h)=|\{(v i, v j) \in E 1 \mid(h(v i), h(v j)) \notin E 2\}|$ edge in E 1 corresponding edge not in E 2
$E B(h)=\left|\left\{(v i, v j) \in E 2 \mid\left(h^{-1}(v i), h^{-1}(v j)\right) \notin E 1\right\}\right|$ edge in E 2 corresponding edge not in E1
Error(h) $=\mathrm{EF}(\mathrm{h})+\mathrm{EB}(\mathrm{h})$
GD(G1,G2) $=$ min $\operatorname{Error}(\mathrm{h})$ for all 1-1, onto $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V}$ 2

Application of Relational Distance
 represented by graphs

- Their parts were the nodes.

