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Today’s Outline

• Announcements:

• Today’s Topics:
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• Today s Topics: 
› Graph Matching by Backtracking Tree 

Search

Graph Matching

Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2)

Questions to ask:

1. Are G1 and G2 isomorphic?

2. Is G1 isomorphic to a subgraph of G2?

3. How similar is G1 to G2?

4. How similar is G1 to the most similar
subgraph of G2?
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Isomorphism for Digraphs
G1 is isomorphic to G2 if there is a 1-1, onto
mapping h: V1  V2 such that   ( vi,vj )  E1 iff ( h(vi), h(vj) )  E2.

1 2
G1 G2

a b

4 5

3 c

d e

Find an isomorphism h: {1,2,3,4,5}  {a,b,c,d,e}.
Check that the condition holds for every edge.

Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d
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Isomorphism for Digraphs
G1 is isomorphic to G2 if there is a 1-1, onto
mapping h: V1  V2 such that   ( vi,vj )  E1 iff ( h(vi), h(vj) )  E2

1 2
G1 G2

a b

4 5

3 c

d e

Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d
(1,2)  E1 and (h(1),h(2))=(b,e)  E2.
(2,1)  E1 and (e,b)  E2.
(2,5)  E1 and (e,d)  E2.
(3,1)  E1 and (c,b)  E2.
(3,2)  E1 and (c,e)  E2.
...
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Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there
is a 1-1 mapping h: V1  V2 such that  ( vi,vj )  E1  ( h(vi), h(vj) )  E2.

1 2 a b
G1 G2

3 c d

Isomorphism and subgraph isomorphism
are defined similarly for undirected graphs.

In this case, when (vi,vj)  E1, either 
(vi,vj) or (vj,vi) can be listed in E2, since
they are equivalent and both mean {vi,vj}. 6
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Subgraph Isomorphism for Graphs

G1 is isomorphic to a subgraph of G2 if there
is a 1-1 mapping h: V1  V2 such that  {vi,vj }  E1  { h(vi), h(vj) }  E2.

1 2 a b
G1 G2

3 c d

Because there are no directed edges, there are more possible mappings.

1 2   3
c     b   d
c     d   b   (shown on graph)
b     c   d
b     d   c
d     b   c
d     c   b
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Graph Matching Algorithms:
Subgraph Isomorphism for Digraph

Given model graph M = (VM,EM)
data graph D = (VD ED)data   graph  D = (VD,ED)

Find  1-1 mapping h:VM  VD

satisfying  (vi,vj)  EM   ((h(vi),h(vj))  ED.
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Method:  Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

1 2 b

3

a c

de

M D

root

1,c 1,d

3,c 3,a

1,a 1,b 1,e

2,b 2,c 2,a 2,c

3,d 3,e 3,d
X X

X X X X YES!

. . . . . . . . .

. . .

(1,2)  M, but (a,b)  D
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procedure Treesearch(VM, VD, EM, ED, h) {

v = first(VM);
for each w  VD  {

h’ = h  {(v,w)};
OK = true;
for each edge (vi,vj) in EM 

Treesearch for Subgraph Isomorphism in Digraphs

(with vi < vj for

//add to mapping

g ( j)
if one of vi or vj is v and the other

has been assigned a value in h’ 
if  ( (h’(vi),h’(vj)) is NOT in ED )
{OK = false; break;};

if OK   {
VM’ = VM – v;
VD’  = VD – w’
if isempty(VM’) output(h’);
else Treesearch(VM’,VD’,EM,ED,h’)
}  }  }

undirected graphs)

//remove from set
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Method:  Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

1 2 b

3

a c

de

M D

VM={1,2,3}
EM = {(1,2),(2,3),(3,2)}

VD={a,b,c,d,e}
ED={(a,e),(b,a),(b,c),(c,d),(d,c),(d,e),(e,e)}

v = 1; w = a; h’ = {(1,a)}; no edges can be checked yet. 
v = 2; w = b; h’ = {(1,a), (2,b)}; (1,2)  EM, but (a,b) not  ED; OK = false.

w = c; h’ = {(1,a), (2,c)}; (1,2)  EM, but (a,c) not in ED; OK = false.
...
Nothing works for vertex 2 when (1,a) is in h.
The tree search comes back from the recursive call, returning back to v=1.
v=1; w = b; h’ = {(1,b)}; no edges can be checked yet.
v=2; w = a; h’ = {(1,b),(2,a)}; (1,2)  EM and (b,a)  ED, so OK stays true
v=3; w = c; h’ = {(1,b),(2,a);(3,c)}; (2,3)  EM but (a,c) not  ED; OK = false

w = d and w = e also fail, so eventually v=3 fails, and v=2 with w=a fails
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Method:  Recursive Backtracking Tree Search
(Order is depth first, leftmost child first.)

1 2 b

3

a c

de

M D

VM={1,2,3}
EM = {(1,2),(2,3),(3,2)}

VD={a,b,c,d,e}
ED={(a,e),(b,a),(b,c),(c,d),(d,c),(d,e),(e,e)}

v=1; w = b; h’ = {(1,b)}; no edges can be checked yet.
v=2; w = c; h’ = {(1,b),(2,c)}; (1,2)  EM and (b,c)  ED, so OK stays true
v=3; w = a; h’ = {(1,b),(2,c),(3,a)}; (2,3)  EM but (c,a) not  ED; OK = false

w = d; h’ = {(1,b),(2,c),(3,d)}; (2,3)  EM and (c,d)  ED, so OK
(3,2)  EM and (d,c)  ED, so OK 

We’ve used up all of VM, so output the final mapping   {(1,b),(2,c),(3,d)}
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Similar Digraphs

Sometimes two graphs are close to isomorphic, but have a few “errors."

1 2
G1 G2

a b

Let h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5) = d.

4 5

3 c

d e

(1,2)   (b,e)
(2,1)   (e,b)

X (c,b)
(4,5)   (a,d)
(2,5)   (e,d)
(3,2)      X
(3,4)    (c,a)

(c,b)  G2, but (3,1)  G1

(3,2)  G1, but (c,e)  G2

The mapping h has 2 errors.

13

Intuitively, the error of mapping h tells us
- how many edges of G1 have no corresponding edge in G2 and
- how many edges of G2 have no corresponding edge in G1.

Error of a Mapping

Let G1=(V1,E1) and G2=(V2,E2), and let h:V1 V2 be a 1-1, onto mapping.

f dforward
error

backward
error

total error

relational 
distance

EF(h) = |{(vi,vj)E1 | (h(vi),h(vj)) E2}|
edge in E1     corresponding edge not in E2

EB(h) = |{(vi,vj)E2 | (h  (vi),h  (vj))E1}|
edge in E2    corresponding edge not in E1

Error(h) = EF(h) + EB(h)

GD(G1,G2) = min  Error(h)
for all 1-1, onto h:V1 V2 

-1 -1
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Branch-and-Bound Tree Search

Keep track of the least-error mapping.

1 2 b

3

a c

d

M D

map err = 0
root

3,c 3,a

1,a

2,b 2,c 2,d 2,a

3,c
X X

X

. . .

map_err = 0
bound_err = 99999

1,b
map_err = 0

map_err = 1

map_err = 1
bound_err = 1
mapping = {(1,a)(2,b)(3,c)}

map_err = 0

2,d2,c

X X

map_err = 0; bound_err = 1
mapping = {(1,b)(2,d)(3,c)}

map_err = 0
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Application of Relational Distance
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• These object models were 
represented by graphs

• Their parts were the nodes.

• The 2 kinds of edges were for
connection and parallel relations.

• Relational distance was used to
compare and cluster them.


