

Today's Outline

- Announcements:
, HW 5 due Friday, May 31.
- Today's Topics:
, Weiss 9.5, 9.6

Minimum Spanning Tree

- Edges are weighted: find minimum cost spanning tree
- Applications
, Find cheapest way to wire your house
, Find minimum cost to send a message on the Internet

Two Algorithms

- Prim: (build tree incrementally)
, Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree
- Kruskal: (build forest that will finish as a tree)
, Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest

Prim's Algorithm Implementation

- Assume adjacency list representation

Initialize connection cost of each node to "inf" and "unmark" them
Choose one node, say vand set cost[v] $=0$ and $\operatorname{prev}[v]=0$ While there are unmarked nodes

Select the unmarked node \mathbf{u} with minimum cost; mark it
For each unmarked node \mathbf{w} adjacent to \mathbf{u}
if $\operatorname{cost}(u, w)<\operatorname{cost}(w)$ then $\operatorname{cost}(w):=\operatorname{cost}(u, w)$ $\operatorname{prev}[w]=u$

- Looks a lot like Dijkstra's algorithm!

Prim's algorithm

Prim's algorithm Analysis

- Like Dijkstra's algorithm
- If the "Select the unmarked node u with minimum cost" is done with binary heap then $\mathrm{O}((\mathrm{n}+\mathrm{m}) \operatorname{logn})$

Kruskal's Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Kruskal's Algorithm

Initialize a forest of trees, each tree being a single node Build a priority queue of edges with priority being lowest cost

Repeat until |V|-1 edges have been accepted \{
Deletemin lowest cost edge from priority queue If it forms a cycle then discard it
else accept the edge - It will join 2 existing trees yielding a
larger tree and reducing the forest by one tree
\}

The accepted edges form the minimum spanning tree

Properties of trees in K's algorithm

- Vertices in different trees are disjoint
, True at initialization and Union won't modify the fact for remaining trees
- Trees form equivalent classes under the relation "is connected to"
> u connected to u (reflexivity)
, u connected to v implies v connected to u (symmetry)
, u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)

Select edge with lowest
cost $(4,5)$
Find(4) $=1$, Find (5) $=2$
Union $(1,2)$
F= $\{\{1,3,4,2,5,6\}\}$
5 edges accepted : end

Total cost $=10$
Although there is a unique
spanning tree in this
example, this is not
generally the case
$5 / 29 / 13$

Kruskal's Algorithm Analysis

- Initialize forest $O(n)$
- Initialize heap $O(m), m=|E|$
- Loop performed m times
, In the loop one Deletemin O(logm)
, Two Find, each O(logn)
, One Union (at most) O(1)
- So worst case O(mlogm)

5/29/13
Minimum Spanning Trees (26

Time Complexity Summary

- Recall that $m=|E|=O\left(V^{2}\right)=O\left(n^{2}\right)$
- Prim's runs in $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log n)$
- Kruskal's runs in O (m log m)
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations

