Sorting

CSE 373
Data Structures \& Algorithms
Linda Shapiro
Spring 2013

Today's Outline

- Announcements:
- Today's Topics:
, Sorting (Weiss, Chapter 7)
, Sections 7.1-7.3 and 7.5
, Section 7.6, Mergesort
, Section 7.7, Quicksort

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
, Is copying needed? $O(n)$ additional space
, In-place sorting - no copying - O(1) additional space
, Somewhere in between for "temporary", e.g. O(logn) space
> External memory sorting - data so large that does not fit in memory

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
, E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
, Extremely important property for databases
, A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Bubblesort

```
    bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j=2 to n-i+1 do
            if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
        }
```


9

Put the largest element in its

Put $2^{\text {nd }}$ largest element in its place

Bubble Sort: Just Say No

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
- We bubblize for $\mathrm{i}=1$ to n (i.e, n times)
- Each bubblization is a loop that makes n-i comparisons
- This is $O\left(\mathrm{n}^{2}\right)$

5/31/13
Sorting
12

Insertion Sort

- What if first k elements of array are already sorted?
> 4, 7, 12, 5, 19, 16
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get $\mathrm{k}+1$ sorted elements

$$
>4,5,7,12,19,16
$$

Insertion Sort

InsertionSort(A[1..N]: integer array, N : integer) \{ i, j, temp: integer ;
for $i=2$ to $N\{$
temp := A[i];
j := i;
while $\mathrm{j}>1$ and $\mathrm{A}[\mathrm{j}-1]>$ temp $\{$ $A[j]:=A[j-1] ; j:=j-1 ;\}$ $\mathrm{A}[\mathrm{j}]=$ temp;

\}

- Is Insertion sort in place?
- Running time = ?

Insertion Sort Characteristics

- In place and Stable
- Running time
> Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time
- Good sorting algorithm for almost sorted data
> Each item is close to where it belongs in sorted order.

17

Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Children of A[i] = A[2i], A[2i+1]
- Keep track of current size N (number of nodes)

Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

Repeated DeleteMax

Heapsort: Analysis

- Running time

, time to build max-heap is $\mathrm{O}(\mathrm{N})$
, time for N DeleteMax operations is $\mathrm{NO}(\log \mathrm{N})$
, total time is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

- Can also show that running time is $\Omega(\mathrm{N} \log \mathrm{N})$ for some inputs,
, so worst case is $\Theta(\mathbf{N} \log \mathbf{N})$
, Average case running time is also $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Heapsort is in-place but not stable (why?)

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
, Store the data at the end of the heap array
, Not "in the heap" but it is in the heap array

Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

"Divide and Conquer"

- Very important strategy in computer science:
, Divide problem into smaller parts
, Independently solve the parts
, Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves \rightarrow Mergesort
- Idea 2 : Partition array into items that are "small" and items that are "large", then recursively sort the two sets \rightarrow Quicksort

Soring
24

Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : \{
//precondition: n is a power of $2 / /$
i, m, parity : integer
T[1..n]: integer array
$\mathrm{m}:=2$; parity $:=0$;
while $m \leq n$ do
for $i \equiv 1$ to $n-m+1$ by m do
parity $=0$ then Merge (A, T,i,i+m-1); else Merge($T, A, i, i+m-1)$
parity $:=1$ - parity;
if parity $\stackrel{=}{=} 1$ then
for $i=1$ to n do $A[i]:=T[i]$;
\}

	How do you handle non-powers of 2?
How can the final copy be avoided?	
$5 / 31 / 13$	Sorting

Mergesort Analysis

- Let $\mathrm{T}(\mathrm{N})$ be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes T(N/2) and merging takes $\mathrm{O}(\mathrm{N})$

5/31/13
Sorting

Mergesort Recurrence

 Relation- The recurrence relation for $\mathrm{T}(\mathrm{N})$ is:
> $\mathrm{T}(1) \leq \mathrm{a}$
- base case: 1 element array \rightarrow constant time
, $\mathrm{T}(\mathrm{N}) \leq 2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{bN}$
- Sorting N elements takes
- the time to sort the left half
- plus the time to sort the right half
- plus an $\mathrm{O}(\mathrm{N})$ time to merge the two halves
- $T(N)=O(n \log n)$

5/31/13
Sorting $\quad 38$

Properties of Mergesort

- Not in-place
, Requires an auxiliary array ($\mathrm{O}(\mathrm{n})$ extra space)
- Stable
> Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.

"Four easy steps"

- To sort an array \mathbf{S}

1. If the number of elements in \mathbf{S} is 0 or 1 , then return. The array is sorted.
2. Pick an element v in \mathbf{S}. This is the pivot value.
3. Partition $\mathbf{S}-\{v\}$ into two disjoint subsets, \mathbf{S}_{1} $=\{$ all values $x \leq v\}$, and $S_{2}=\{$ all values $x \geq v\}$.
4. Return QuickSort(\mathbf{S}_{1}), v, QuickSort(\mathbf{S}_{2})

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does
, Partition array into left and right sub-arrays
- Choose an element of the array, called pivot
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
, Recursively sort left and right sub-arrays
, Concatenate left and right sub-arrays in $\mathrm{O}(1)$ time

5/31/13
Sorting
40

The steps of QuickSort

Details, details

- Implementing the actual partitioning
- Picking the pivot
> want a value that will cause $\left|\mathrm{S}_{1}\right|$ and $\left|\mathrm{S}_{2}\right|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Partitioning:Choosing the pivot

- One implementation (there are others)
, median3 finds pivot and sorts left, center, right
- Median3 takes the median of leftmost, middle, and rightmost elements
- An alternative is to choose the pivot randomly (need a random number generator; "expensive")
- Another alternative is to choose the first element (but can be very bad. Why?)
, Swap pivot with next to last element

Example

Choose the pivot as the median of three

Median of $0,6,8$ is 6 . Pivot is 6 | 0 | 1 | 4 | 9 | 7 | 3 | 5 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Place the largest at the right and the smallest at the left. Swap pivot with next to last element.

Quicksort Partitioning

- Need to partition the array into left and right subarrays
, the elements in left sub-array are \leq pivot
, elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
, Choose an element from the array as the pivot
, Make one pass through the rest of the array and swap as needed to put elements in partitions

44

Partitioning in-place

> Set pointers i and j to start and end of array
, Increment i until you hit element $A[i]>$ pivot
> Decrement j until you hit elmt A[j] < pivot
, Swap A[i] and A[j]
> Repeat until i and j cross
, Swap pivot (at $A[N-2]$) with $A[i]$

Example

0	1	4		7	3	5	9	6	8
i ${ }^{7}$									
0	1	4		7	3	5	9	6	8

Cross-over $\mathrm{i}>\mathrm{j}$

49

Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
> $\mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
- constant time if 0 or 1 element
, For $N>1,2$ recursive calls plus linear time for partitioning
, $T(N)=2 T(N / 2)+O(N)$
- Same recurrence relation as Mergesort $\mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$
5/31/13 Sorting

Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- O($n \log n$) average case performance, but $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case performance.

Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer): \{
pivotindex : integer;
if left + CUTOFF \leq right then
pivot := median3(A,left, right);
pivotindex := Partition(A, left, right-1, pivot);
Quicksort(A, left, pivotindex - 1);
Quicksort(A, left, pivotindex - 1);
Quicksort(A, pivotindex + 1, right);
Quicksort(A, pivotindex + 1,
else
\}

Don't use quicksort for small arrays CUTOFF = 10 is reasonable

Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot one sub-array is empty at each recursion
, $T(N) \leq a$ for $N \leq C$
, $T(N) \leq T(N-1)+b N$
, $\leq T(N-2)+b(N-1)+b N$
, $\leq \mathrm{T}(\mathrm{C})+\mathrm{b}(\mathrm{C}+1)+\ldots+\mathrm{bN}$
, $\leq a+b(C+(C+1)+(C+2)+\ldots+N)$
, $\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Fortunately, average case performance is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ (see text for proof)

Folklore

- "Quicksort is the best in-memory sorting algorithm."
- Truth
> Quicksort uses very few comparisons on average.
, Quicksort does have good performance in the memory hierarchy.
- Small footprint
- Good locality

5/31/13
Sorting

