
1

Sorting

CSE 373
Data Structures & Algorithms

Linda Shapiro
Spring 2013

Today’s Outline

• Announcements:

• Today’s Topics:

5/31/13 2

• Today s Topics:
› Sorting (Weiss, Chapter 7)
› Sections 7.1-7.3 and 7.5

› Section 7.6, Mergesort

› Section 7.7, Quicksort

Sorting

Sorting

• Input

› an array A of data records (Note: we have seen how to
sort when elements are in linked lists: Mergesort)

› a key value in each data record

5/31/13 Sorting 3

› a key value in each data record
› a comparison function which imposes a

consistent ordering on the keys (e.g., integers)

• Output

› reorganize the elements of A such that
• For any i and j, if i < j then A[i]  A[j]

Space

• How much space does the sorting algorithm
require in order to sort the collection of items?
› Is copying needed? O(n) additional space

5/31/13 Sorting 4

› In-place sorting – no copying – O(1) additional
space

› Somewhere in between for “temporary”, e.g.
O(logn) space

› External memory sorting – data so large that does
not fit in memory

Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any

i<j, A[i] < A[j]

Thi th t d t t l t h k

5/31/13 Sorting 5

› This means that you need to at least check on
each element at the very minimum, I.e., at least
O(N)

› And you could end up checking each element
against every other element, which is O(N2)

› The big question is: How close to O(N) can you
get?

Stability

• Stability: Does it rearrange the order of input
data records which have the same key value
(duplicates)?

5/31/13 Sorting 6

› E.g. Phone book sorted by name. Now sort by
county – is the list still sorted by name within each
county?

› Extremely important property for databases

› A stable sorting algorithm is one which does not
rearrange the order of duplicate keys

2

n2

n·log2n

n

Faster is better!

log2n

5/31/13 7Sorting

Bubble Sort

• “Bubble” elements to to their proper place in
the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]

5/31/13 Sorting 8

› Bubble every element towards its correct position
• last position has the largest element

• then bubble every element except the last one towards
its correct position

• then repeat until done or until the end of the quarter,
whichever comes first ...

Bubblesort

bubble(A[1..n]: integer array, n : integer): {
i, j : integer;
for i = 1 to n-1 do
for j = 2 to n–i+1 do

if A[j-1] > A[j] then SWAP(A[j-1],A[j]);

5/31/13 Sorting 9

if A[j 1] > A[j] then SWAP(A[j 1],A[j]);
}

SWAP(a,b) : {
t :integer;6
t:=a; a:=b; b:=t;

}

6
5
3
2
7
1

1
2
3
4
5
6

5
6
3
2
7
1

5
3
6
2
7
1

Put the largest element in its
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23 23
9 10 12 23 18 15 16 17 141 2 3

5/31/13 Sorting 10

1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23

swap

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

Put 2nd largest element in its
place

1 2 3 7 8 9 10 12

2 3larger value? 7 8

7 8

swap

1 2 3 7 8 9 10 12

9 10 121 2 3

18 15 16 17 14 23

15 18 16 17 14 23

9 10 12 18 18

swap

15 16 18 17 14 23

5/31/13 Sorting 11

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 17 14 23
swap

15 16 17 18 14 23
swap

15 16 17 14 18 23

Two elements done, only n-2 more to go ...

Bubble Sort: Just Say No

• “Bubble” elements to to their proper place
in the array by comparing elements i and
i+1, and swapping if A[i] > A[i+1]

5/31/13 Sorting 12

• We bubblize for i=1 to n (i.e, n times)

• Each bubblization is a loop that makes n-i
comparisons

• This is O(n2)

3

Insertion Sort

• What if first k elements of array are
already sorted?
› 4, 7, 12, 5, 19, 16

5/31/13 Sorting 13

• We can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements
› 4, 5, 7, 12, 19, 16

Insertion Sort

InsertionSort(A[1..N]: integer array, N: integer) {
i, j, temp: integer ;
for i = 2 to N {
temp := A[i];
j := i;

5/31/13 Sorting 14

j : i;
while j > 1 and A[j-1] > temp {

A[j] := A[j-1]; j := j–1;}
A[j] = temp;

}
}

• Is Insertion sort in place?
• Running time = ?

2 1 4
1 2 3

i
j

Example

1 2 3 8 7 9 10 12 23 18 15 16 17 14

1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23 15 16 17 141 2 3 7 8 9 10 12

5/31/13 Sorting 15

18 15 23 16 17 14

15 18 23 16 17 14

15 18 16 23 17 14

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 23 17 141 2 3 7 8 9 10 12

Example

15 16 18 17 23 141 2 3 7 8 9 10 12

15 16 17 18 23 141 2 3 7 8 9 10 12

15 16 17 18 14 231 2 3 7 8 9 10 12

5/31/13 Sorting 16

15 16 17 18 14 231 2 3 7 8 9 10 12

15 16 17 14 18 231 2 3 7 8 9 10 12

15 16 14 17 18 231 2 3 7 8 9 10 12

15 14 16 17 18 231 2 3 7 8 9 10 12

14 15 16 17 18 231 2 3 7 8 9 10 12

Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)

5/31/13 Sorting 17

• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted
data
› Each item is close to where it belongs in

sorted order.

Heap Sort

• We use a Max-Heap
• Root node = A[1]
• Children of A[i] = A[2i], A[2i+1]

5/31/13 Sorting 18

• Keep track of current size N (number of
nodes)

N = 5

value

index

7

65

42

7 5 6 2 4
1 2 3 4 5 6 7 8

4

Using Binary Heaps for
Sorting

• Build a max-heap
• Do N DeleteMax operations

and store each Max
element as it comes out of

Build
Max-heap

7

65

42

5/31/13 Sorting 19

element as it comes out of
the heap

• Data comes out in largest
to smallest order

• Where can we put the
elements as they are
removed from the heap?

DeleteMax 6

45

72

1 Removal = 1 Addition
• Every time we do a DeleteMax, the heap

gets smaller by one node, and we have one
more node to store
› Store the data at the end of the heap array

5/31/13 Sorting 20

p y

› Not "in the heap" but it is in the heap array

N = 4

value

index

6 5 4 2 7
1 2 3 4 5 6 7 8

6

45

72

Repeated DeleteMax

N 3

5 2 4 6 7
1 2 3 4 5 6 7 8

5

42

76

5/31/13 Sorting 21

N = 3

N = 2

4 2 5 6 7
1 2 3 4 5 6 7 8

4

52

76

Heap Sort is In-place

• After all the DeleteMaxs, the heap is gone
but the array is full and is in sorted order

2

5/31/13 Sorting 22

N = 0

value

index

2 4 5 6 7
81 2 3 4 5 6 7

2

54

76

Heapsort: Analysis

• Running time
› time to build max-heap is O(N)

› time for N DeleteMax operations is N O(log N)

› total time is O(N log N)

5/31/13 Sorting 23

› total time is O(N log N)

• Can also show that running time is (N log N)
for some inputs,
› so worst case is (N log N)

› Average case running time is also O(N log N)

• Heapsort is in-place but not stable (why?)

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

5/31/13 Sorting 24

› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves  Mergesort

• Idea 2 : Partition array into items that are
“small” and items that are “large”, then
recursively sort the two sets  Quicksort

5

Mergesort

8 2 9 4 5 3 1 6

5/31/13 Sorting 25

• Divide it in two at the midpoint

• Conquer each side in turn (by
recursively sorting)

• Merge two halves together

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

Divide

Divide

8 2 9 4 5 3 1 6

5/31/13 Sorting 26

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide
1 element

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

5/31/13 Sorting 27

Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

5/31/13 Sorting 28

1 Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

5/31/13 Sorting 29

1 2 3 4 5 Auxiliary array

Merging

i j normal

5/31/13 Sorting 30

target

i j

target

Left completed
first

copy

6

Merging

i j Right completed
first

first

second

5/31/13 Sorting 31

target

Merging Algorithm

Merge(A[], T[] : integer array, left, right : integer) : {
mid, i, j, k, l, target : integer;
mid := (right + left)/2;
i := left; j := mid + 1; target := left;
while i < mid and j < right do

5/31/13 Sorting 32

j g
if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;

else T[target] := A[j]; j := j + 1;
target := target + 1;

if i > mid then //left completed//
for k := left to target-1 do A[k] := T[k];

if j > right then //right completed//
k : = mid; l := right;
while k > i do A[l] := A[k]; k := k-1; l := l-1;
for k := left to target-1 do A[k] := T[k];

}

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then

mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);

5/31/13 Sorting 33

Merge(A,T,left,right);
}

MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n];

}

Iterative Mergesort

Merge by 1

Merge by 2

uses 2 arrays;
alternates
between them

5/31/13 Sorting 34

Merge by 4

Merge by 8

Iterative Mergesort

Merge by 1

Merge by 2

5/31/13 Sorting 35

Merge by 4

Merge by 8

Merge by 16

Need of a last copy

Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
i, m, parity : integer;
T[1..n]: integer array;
m := 2; parity := 0;

5/31/13 Sorting 36

while m < n do
for i = 1 to n – m + 1 by m do

if parity = 0 then Merge(A,T,i,i+m-1);
else Merge(T,A,i,i+m-1);

parity := 1 – parity;
m := 2*m;

if parity = 1 then
for i = 1 to n do A[i] := T[i];

}
How do you handle non-powers of 2?
How can the final copy be avoided?

7

Mergesort Analysis

• Let T(N) be the running time for an
array of N elements

• Mergesort divides array in half and calls

5/31/13 Sorting 37

g y
itself on the two halves. After returning,
it merges both halves using a temporary
array

• Each recursive call takes T(N/2) and
merging takes O(N)

Mergesort Recurrence
Relation

• The recurrence relation for T(N) is:

› T(1) < a
• base case: 1 element array  constant time

5/31/13 Sorting 38

› T(N) < 2T(N/2) + bN
• Sorting N elements takes

– the time to sort the left half

– plus the time to sort the right half

– plus an O(N) time to merge the two halves

• T(N) = O(n log n)

Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra

space)

5/31/13 Sorting 39

p)

• Stable
› Make sure that left is sent to target on

equal values.

• Iterative Mergesort reduces copying.

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does

5/31/13 Sorting 40

› Partition array into left and right sub-arrays
• Choose an element of the array, called pivot

• the elements in left sub-array are all less than pivot

• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays

› Concatenate left and right sub-arrays in O(1) time

“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1,

then return. The array is sorted.

5/31/13 Sorting 41

y

2. Pick an element v in S. This is the pivot
value.

3. Partition S-{v} into two disjoint subsets, S1

= {all values xv}, and S2 = {all values xv}.

4. Return QuickSort(S1), v, QuickSort(S2)

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

0S1 S2
partition S

5/31/13 Sorting 42

13 8192

43 65
31

5726

7501 2

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Voila! S is sorted
[Weiss]

8

Details, details

• Implementing the actual partitioning

• Picking the pivot
› want a value that will cause |S1| and |S2| to

5/31/13 Sorting 43

| 1| | 2|
be non-zero, and close to equal in size if
possible

• Dealing with cases where the element
equals the pivot

Quicksort Partitioning

• Need to partition the array into left and right sub-
arrays
› the elements in left sub-array are  pivot

› elements in right sub array are  pivot

5/31/13 Sorting 44

› elements in right sub-array are  pivot

• How do the elements get to the correct partition?

› Choose an element from the array as the pivot

› Make one pass through the rest of the array and
swap as needed to put elements in partitions

Partitioning:Choosing the pivot

• One implementation (there are others)

› median3 finds pivot and sorts left, center,
right

Median3 takes the median of leftmost middle and

5/31/13 Sorting 45

• Median3 takes the median of leftmost, middle, and
rightmost elements

• An alternative is to choose the pivot randomly (need a
random number generator; “expensive”)

• Another alternative is to choose the first element (but
can be very bad. Why?)

› Swap pivot with next to last element

Partitioning in-place

› Set pointers i and j to start and end of array

› Increment i until you hit element A[i] > pivot

› Decrement j until you hit elmt A[j] < pivot

5/31/13 Sorting 46

j y [j] p

› Swap A[i] and A[j]

› Repeat until i and j cross

› Swap pivot (at A[N-2]) with A[i]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

Example

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three

0 1 4 9 7 3 5 2 6 8

i j

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

5/31/13 47Sorting

Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

i j

i j

5/31/13 Sorting 48

0 1 4 9 7 3 5 2 6 8

0 1 4 2 7 3 5 9 6 8

i j

Move i to the right up to A[i] larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

9

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

Cross-over i > j

5/31/13 49Sorting

Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF  right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);

5/31/13 Sorting 50

Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Quicksort Best Case
Performance

• Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
› T(0) = T(1) = O(1)

5/31/13 Sorting 51

› T(0) = T(1) = O(1)
• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time
for partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)

Quicksort Worst Case
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N)  a for N  C
› T(N)  T(N-1) + bN

5/31/13 Sorting 52

() ()
›  T(N-2) + b(N-1) + bN
›  T(C) + b(C+1)+ … + bN
›  a +b(C + (C+1) + (C+2) + … + N)
› T(N) = O(N2)

• Fortunately, average case performance is
O(N log N) (see text for proof)

Properties of Quicksort

• Not stable because of long distance
swapping.

• No iterative version (without using a stack).

5/31/13 Sorting 53

• Pure quicksort not good for small arrays.

• “In-place”, but uses auxiliary storage because
of recursive call (O(logn) space).

• O(n log n) average case performance, but
O(n2) worst case performance.

Folklore

• “Quicksort is the best in-memory sorting
algorithm.”

• Truth

5/31/13 Sorting 54

› Quicksort uses very few comparisons on
average.

› Quicksort does have good performance in
the memory hierarchy.

• Small footprint
• Good locality

