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Today’s Outline

• Announcements:

• Today’s Topics:
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• Today s Topics: 
› Sorting (Weiss, Chapter 7)
› Sections 7.1-7.3 and 7.5

› Section 7.6, Mergesort

› Section 7.7, Quicksort

Sorting 

Sorting

• Input

› an array A of data records (Note: we have seen how to 
sort when elements are in linked lists: Mergesort)

› a key value in each data record
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› a key value in each data record
› a comparison function which imposes a 

consistent ordering on the keys (e.g., integers)

• Output

› reorganize the elements of A such that
• For any i and j, if i < j then A[i]  A[j]

Space

• How much space does the sorting algorithm 
require in order to sort the collection of items?
› Is copying needed? O(n) additional space
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› In-place sorting – no copying – O(1) additional 
space

› Somewhere in between for “temporary”, e.g. 
O(logn) space

› External memory sorting – data so large that does 
not fit in memory

Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any 

i<j, A[i] < A[j]

Thi th t d t t l t h k
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› This means that you need to at least check on 
each element at the very minimum, I.e., at least 
O(N)

› And you could end up checking each element 
against every other element, which is O(N2)

› The big question is: How close to O(N) can you 
get?

Stability

• Stability: Does it rearrange the order of input 
data records which have the same key value 
(duplicates)? 
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› E.g. Phone book sorted by name. Now sort by 
county – is the list still sorted by name within each 
county?

› Extremely important property for databases 

› A stable sorting algorithm is one which does not 
rearrange the order of duplicate keys
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n2

n·log2n

n

Faster is better!

log2n
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Bubble Sort

• “Bubble” elements to to their proper place in 
the array by comparing elements i and i+1, 
and swapping if A[i] > A[i+1]
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› Bubble every element towards its correct position
• last position has the largest element

• then bubble every element except the last one towards 
its correct position

• then repeat until done or until the end of the quarter, 
whichever comes first ...

Bubblesort

bubble(A[1..n]: integer array, n : integer): {
i, j : integer;
for i = 1 to n-1 do 
for j = 2 to n–i+1 do

if A[j-1] > A[j] then SWAP(A[j-1],A[j]);
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if A[j 1] > A[j] then SWAP(A[j 1],A[j]);
}

SWAP(a,b) :  {
t :integer;6
t:=a; a:=b; b:=t; 

}
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Put the largest element in its 
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23 23
9 10 12 23 18 15 16 17 141 2 3
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1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23

swap

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

Put 2nd largest element in its 
place

1 2 3 7 8 9 10 12

2 3larger value? 7 8

7 8

swap

1 2 3 7 8 9 10 12

9 10 121 2 3

18 15 16 17 14 23

15 18 16 17 14 23

9 10 12 18 18

swap

15 16 18 17 14 23

5/31/13 Sorting 11

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 17 14 23
swap

15 16 17 18 14 23
swap

15 16 17 14 18 23

Two elements done, only n-2 more to go ...

Bubble Sort: Just Say No

• “Bubble” elements to to their proper place 
in the array by comparing elements i and 
i+1, and swapping if A[i] > A[i+1]
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• We bubblize for i=1 to n (i.e, n times)

• Each bubblization is a loop that makes n-i 
comparisons

• This is O(n2)



3

Insertion Sort

• What if first k elements of array are 
already sorted?
› 4, 7, 12, 5, 19, 16
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• We can shift the tail of the sorted elements 
list down and then insert next element into 
proper position and we get k+1 sorted 
elements
› 4, 5, 7, 12, 19, 16

Insertion Sort

InsertionSort(A[1..N]: integer array, N: integer) {         
i, j, temp: integer ;
for i = 2 to N {
temp := A[i];
j := i;
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j :  i;
while j > 1 and A[j-1] > temp {

A[j] := A[j-1]; j := j–1;}
A[j] = temp;            

}        
}

• Is Insertion sort in place? 
• Running time = ?

2  1  4
1   2   3

i
j

Example

1 2 3 8 7 9 10 12 23 18 15 16 17 14

1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23 15 16 17 141 2 3 7 8 9 10 12
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18 15 23 16 17 14

15 18 23 16 17 14

15 18 16 23 17 14

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 23 17 141 2 3 7 8 9 10 12

Example

15 16 18 17 23 141 2 3 7 8 9 10 12

15 16 17 18 23 141 2 3 7 8 9 10 12

15 16 17 18 14 231 2 3 7 8 9 10 12
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15 16 17 18 14 231 2 3 7 8 9 10 12

15 16 17 14 18 231 2 3 7 8 9 10 12

15 16 14 17 18 231 2 3 7 8 9 10 12

15 14 16 17 18 231 2 3 7 8 9 10 12

14 15 16 17 18 231 2 3 7 8 9 10 12

Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)
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• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted 
data
› Each item is close to where it belongs in 

sorted order.

Heap Sort

• We use a Max-Heap
• Root node = A[1]
• Children of A[i] = A[2i], A[2i+1]
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• Keep track of current size N (number of 
nodes)

N = 5

value

index

7

65

42

7 5 6 2 4
1 2 3 4 5 6 7 8
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Using Binary Heaps for 
Sorting

• Build a max-heap
• Do N DeleteMax operations 

and store each Max 
element as it comes out of

Build
Max-heap

7

65

42
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element as it comes out of 
the heap

• Data comes out in largest 
to smallest order

• Where can we put the 
elements as they are 
removed from the heap?

DeleteMax 6

45

72

1 Removal = 1 Addition
• Every time we do a DeleteMax, the heap 

gets smaller by one node, and we have one 
more node to store
› Store the data at the end of the heap array
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p y

› Not "in the heap" but it is in the heap array

N = 4

value

index

6 5 4 2 7
1 2 3 4 5 6 7    8

6

45

72

Repeated DeleteMax

N 3

5 2 4 6 7
1 2 3 4 5 6 7    8

5

42

76
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N = 3

N = 2

4 2 5 6 7
1 2 3 4 5 6 7    8

4

52

76

Heap Sort is In-place

• After all the DeleteMaxs, the heap is gone 
but the array is full and is in sorted order

2
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N = 0

value

index

2 4 5 6 7
81 2 3 4 5 6 7

2

54

76

Heapsort: Analysis

• Running time
› time to build max-heap is O(N)

› time for N DeleteMax operations is N O(log N)

› total time is O(N log N)
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› total time is O(N log N)

• Can also show that running time is (N log N) 
for some inputs, 
› so worst case is (N log N)

› Average case running time is also O(N log N)

• Heapsort is in-place but not stable (why?)

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution
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› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, 
recursively sort left and right halves, then 
merge two halves  Mergesort

• Idea 2 : Partition array into items that are 
“small” and items that are “large”, then 
recursively sort the two sets  Quicksort 



5

Mergesort

8 2 9 4 5 3 1 6
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• Divide it in two at the midpoint

• Conquer each side in turn (by 
recursively sorting)

• Merge two halves together

Mergesort Example

8  2   9   4 5   3   1   6

8 2 1 69 4 5 3

Divide

Divide

8 2 9 4 5 3 1 6
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8   2 1   69   4 5   3

8 2 9 4 5 3 1 6

2   8 4    9 3   5 1   6

2   4   8   9 1   3   5   6

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide
1 element

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6
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Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6
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1 Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

5/31/13 Sorting 29

1 2 3 4 5 Auxiliary array

Merging

i j normal
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target

i j

target

Left completed
first

copy
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Merging

i j Right completed
first

first

second
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target

Merging Algorithm

Merge(A[], T[] : integer array, left, right : integer) : {
mid, i, j, k, l, target : integer;
mid := (right + left)/2;
i := left; j := mid + 1; target := left;
while i < mid and j < right do
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j g
if A[i] < A[j] then T[target] := A[i] ; i:= i + 1; 

else T[target] := A[j]; j := j + 1;
target := target + 1;

if i > mid then //left completed//
for k := left to target-1 do A[k] := T[k];

if j > right then //right completed//
k : = mid; l := right;
while k > i do A[l] := A[k]; k := k-1; l := l-1;
for k := left to target-1 do A[k] := T[k];

}

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then

mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);
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Merge(A,T,left,right);
}

MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n];

}

Iterative Mergesort

Merge by 1 

Merge by 2

uses 2 arrays;
alternates
between them
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Merge by 4

Merge by 8

Iterative Mergesort

Merge by 1

Merge by 2
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Merge by 4

Merge by 8

Merge by 16

Need of a  last copy

Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
i, m, parity : integer;
T[1..n]: integer array;
m := 2; parity := 0;
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while m < n do
for i = 1 to n – m + 1 by m do

if parity = 0 then Merge(A,T,i,i+m-1);
else Merge(T,A,i,i+m-1);

parity := 1 – parity;
m := 2*m;

if parity = 1 then 
for i = 1 to n do A[i] := T[i];    

}
How do you handle non-powers of 2?
How can the final copy be avoided?
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Mergesort Analysis

• Let T(N) be the running time for an 
array of N elements

• Mergesort divides array in half and calls 
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g y
itself on the two halves. After returning, 
it merges both halves using a temporary 
array

• Each recursive call takes T(N/2) and 
merging takes O(N)

Mergesort Recurrence 
Relation

• The recurrence relation for T(N) is:

› T(1) < a  
• base case: 1 element array  constant time
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› T(N) < 2T(N/2) + bN
• Sorting N elements takes 

– the time to sort the left half 

– plus the time to sort the right half 

– plus an O(N) time to merge the two halves

• T(N) = O(n log n) 

Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra 

space)
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p )

• Stable
› Make sure that left is sent to target on 

equal values.

• Iterative Mergesort reduces copying.

Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space 
that MergeSort does
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› Partition array into left and right sub-arrays
• Choose an element of the array, called pivot

• the elements in left sub-array are all less than pivot

• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays

› Concatenate left and right sub-arrays in O(1) time

“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1, 

then return.  The array is sorted.
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y

2. Pick an element v in S.  This is the pivot
value.

3. Partition S-{v} into two disjoint subsets, S1

= {all values xv}, and S2 = {all values xv}.

4. Return QuickSort(S1), v, QuickSort(S2)

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

0S1 S2
partition S
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13 8192

43 65
31

5726

7501 2

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Voila!  S is sorted
[Weiss]
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Details, details

• Implementing the actual partitioning

• Picking the pivot
› want a value that will cause |S1| and |S2| to 
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| 1| | 2|
be non-zero, and close to equal in size if 
possible

• Dealing with cases where the element 
equals the pivot

Quicksort Partitioning

• Need to partition the array into left and right sub-
arrays
› the elements in left sub-array are  pivot

› elements in right sub array are  pivot
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› elements in right sub-array are  pivot

• How do the elements get to the correct partition?

› Choose an element from the array as the pivot

› Make one pass through the rest of the array and 
swap as needed to put elements in partitions

Partitioning:Choosing the pivot

• One implementation (there are others)

› median3 finds pivot and sorts left, center, 
right

Median3 takes the median of leftmost middle and
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• Median3 takes the median of leftmost, middle, and 
rightmost elements

• An alternative is to choose the pivot randomly (need a 
random number generator; “expensive”)

• Another alternative is to choose the first element (but 
can be very bad. Why?)

› Swap pivot with next to last element

Partitioning in-place

› Set pointers i and j to start and end of array

› Increment i until you hit element A[i] > pivot

› Decrement j until you hit elmt A[j] < pivot
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j y [j] p

› Swap A[i] and A[j]

› Repeat until i and j cross

› Swap pivot (at A[N-2]) with A[i]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

Example

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three

0 1 4 9 7 3 5 2 6 8

i j

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.
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Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

i j

i j
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0 1 4 9 7 3 5 2 6 8

0 1 4 2 7 3 5 9 6 8

i j

Move i to the right up to A[i]  larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap
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0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

Cross-over i > j
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Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF  right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
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Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Quicksort Best Case 
Performance

• Algorithm always chooses best pivot 
and splits sub-arrays in half at each 
recursion
› T(0) = T(1) = O(1)
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› T(0) = T(1) = O(1)
• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time 
for partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)

Quicksort Worst Case 
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N)  a for N  C
› T(N)  T(N-1) + bN
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( ) ( )
›  T(N-2) + b(N-1) + bN 
›  T(C) + b(C+1)+ … + bN
›  a +b(C + (C+1) + (C+2) +  … + N)
› T(N) = O(N2)

• Fortunately, average case performance is    
O(N log N) (see text for proof)

Properties of Quicksort

• Not stable because of long distance 
swapping.

• No iterative version (without using a stack).
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• Pure quicksort not good for small arrays.

• “In-place”, but uses auxiliary storage because 
of recursive call (O(logn) space).

• O(n log n) average case performance, but 
O(n2) worst case performance.

Folklore

• “Quicksort is the best in-memory sorting 
algorithm.”

• Truth
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› Quicksort uses very few comparisons on 
average.

› Quicksort does have good performance in 
the memory hierarchy.

• Small footprint
• Good locality


