CSE 373 Spring 2013: Midterm Practice

1. Mathematical Foundations:
(a) Prove by mathematical induction on the length n that the following procedure to determine the length of a linked list returns the correct length. Each node has a data field and a next field that points to the next node.
```
length(L: listptr): integer {
    if L == null return 0;
    else return 1 + length(L.next);
}
```

(b) Prove by mathematical induction on the height h that the following procedure to determine the height of a binary tree returns the correct height. Each node has a data field, a left pointer, and a right pointer. Start with height -1 for the basis.

```
height(T: treeptr): integer {
    if T == null return -1;
    else return 1 + max(height(T.left),height(T.right));
}
```


2. Complexity

(a) What is the complexity of inserting a new element in a stack of n elements implemented as a linked list?
(b) What is the complexity of deleting the first element from a queue of length m implemented as a circular array?
(c) What is the complexity of deleting a node from a binary search tree?
(d) Analyze the complexity of the following code, first computing $T(n)$, the giving the result in Big-Oh notation.

```
result = 5;
for i := 1 to n {
    result = result - 1;
    if result < O break;
}
print result;
```

3. Lists, Stacks, and Queues
(a) A linked stack has nodes with fields data and next. The pointer top points to the top element of the stack. Write a function named pop that removes the top element from the stack, returns the value in its data field, and does so in $\mathrm{O}(1)$ time. You can write in pseudocode or Java.
4. Trees
(a) Write a recursive procedure to find the maximum value in an AVl tree.

(b) You are given the above binary tree T .
a. (12 pts) Show how to insert a new node with key 41 if T is an AVL tree. (Show each step.)
b. (12 pts) Show how the original T would be reorganized after a find $(130, T)$ operation if the tree is a SPLAY tree. (Show each step.)
(c) (13 pts) Suppose that you started with a B^{+}tree of order 3 (with a maximum of 2 keys per internal node and 2 keys per leaf node) that looks like this:

and you want to insert a key of 25 .
Show how this insertion would be done and the resultant B^{+}tree.
5. Hashing
(a) What does the term "rehashing" mean?
(b) What is the worst-case complexity of storing a key in a hash table if the array is very full?
6. General: Be able to give short answer to questions about the structures and concepts we have covered.
(a) What is the advantage of a linked list over a list stored in an array? What is the disadvantage?
(b) Are splay trees always balanced? Why or why not?
