CSE 373: Data Structures \& Algorithms Lecture 16: Topological Sort / Graph Traversals

Nicki Dell

Spring 2014

Midterm

- This Friday in class
- Closed books, closed notes
- Practice midterms posted online

Graphs

- A graph is a formalism for representing relationships among items
- Very general definition because very general concept
- A graph is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- A set of vertices, also known as nodes

$$
\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}
$$

- A set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Each edge $\mathbf{e}_{\mathbf{i}}$ is a pair of vertices $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$
- An edge "connects" the vertices
- Graphs can be directed or undirected

Density / Sparsity

- Recall: In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$
- Recall: In a directed graph: $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$
- So for any graph, $O\left(|\mathrm{E}|+|\mathrm{V}|^{2}\right)$ is $O\left(|\mathrm{~V}|^{2}\right)$
- Another fact: If an undirected graph is connected, then $|\mathrm{V}|-1 \leq|\mathrm{E}|$
- Because $|\mathrm{E}|$ is often much smaller than its maximum size, we do not always approximate $|\mathrm{E}|$ as $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|\mathrm{E}|$ is $\Theta\left(|\mathrm{V}|^{2}\right)$ we say the graph is dense
- More sloppily, dense means "lots of edges"
- If $|\mathrm{E}|$ is $\mathrm{O}(|\mathrm{V}|)$ we say the graph is sparse
- More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
- For example, "what's the lowest-cost path from x to y "
- But we need a data structure that represents graphs
- The "best one" can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- A $|\mathrm{V}| \times|\mathrm{V}|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
- If M is the matrix, then $\mathrm{M}[\mathrm{u}][\mathrm{v}$] being true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $\boldsymbol{O}(|\mathbf{V}|)$
- Get a vertex's in-edges: $\boldsymbol{O}(|\mathbf{V}|)$
- Decide if some edge exists: $\boldsymbol{O}(1)$
- Insert an edge: $\boldsymbol{O}(\mathbf{1})$
- Delete an edge: $\boldsymbol{O}(\mathbf{1})$

S	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- $|\mathrm{V}|^{2}$ bits
- Best for sparse or dense graphs?
- Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
- Instead of a Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- In some situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length $|\mathrm{V}|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge:
$O(1)$ (unless you need to check if it's there)
- Delete an edge:
$O(d)$ where d is out-degree of source
- Space requirements:
- Good for sparse graphs
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Algorithms

Okay, we can represent graphs

Now we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
- Related: Determine if there even is such a path

Topological Sort

Disclaimer: Do not use for official advising purposes !

Problem: Given a DAG G= (V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output: $126,142,143,374,373,417,410,413, \mathrm{XYZ}, 415$

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- Do some DAGs have exactly 1 answer?
- Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output \mathbf{v} and conceptually remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that ($\mathbf{v}, \mathbf{u})$ in \mathbf{E}), decrement the in-degree of \mathbf{u}

Example

Output:

Node:
126142143374373410413415417 XYZ
Removed?
In-degree: $00 \begin{array}{llllllllll} & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}$

Output: 126

Node: 126142143374373410413415417 XYZ Removed? x In-degree: $\begin{array}{lllllllllll} & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & & & & & & & \end{array}$

Node: 126142143374373410413415417 XYZ Removed? x x

In-degree: | | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 1
 0

Example

Output: 126 142
143

Node:
126142143374373410413415417 XYZ Removed? x x x $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & & & & & \\ & 0 & & & & & & & \end{array}$

Example

Output: 126 142

373

Node:
126142143374373410413415417 XYZ Removed? x x x x x

In-degree: 00 | | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | | | | | | | | | |

Example

Output: 126
142
143
374
373
417

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	x	x	x	x	x				x	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2

Example

Output: 126
142
143
374
373
417
410

Node:
126142143374373410413415417 XYZ Removed? x x x x x x x In-degree: 0

Example

Output: 126
142
143
374
373
417
410
413

Node:
126142143374373410413415417 XYZ Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}$

Example

Output: 126
142
143
374
373
417
410
413
XYZ
Node:
126142143374373410413415417 XYZ Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ In-degree: $00 \begin{array}{llllllllll}x & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}$

Example

Output: 126 142 143
374
373
417
410
413
XYZ
Node: $\quad 126142143374373410413415417$ XYZ
415

Notice

- Needed a vertex with in-degree 0 to start
- Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
- Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}\right)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\quad \mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
                enqueue (v) ;
    }
}
```

- What is the worst-case running time?
- Initialization: $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|E|+|V|)$ - much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from \mathbf{v} (i.e., there exists a path from \mathbf{v})

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
- Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if(u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```


Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: explore areas closer to the start node first

Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and process start
    for each node u adjacent to start
    if u is not marked
        DFS (u)
```

- ABDECFGH
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see" DFS2 (Node start) \{
 initialize stack s and push start mark start as visited while(s is not empty) \{ next = s.pop() // and "process" for each node u adjacent to next if (u is not marked) mark u and push onto s
- ACFHGBED
- A different but perfectly fine traversal

Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see" BFS (Node start) \{

- ABCDEFGH
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|E|+|V|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from v to every node

- As before, asymptotically no harder than for one destination

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Many people have a favorite Dijkstra story, even if they never met him

Dijkstra's Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
- A series of steps
- At each one the locally optimal choice is made

