
CSE 373: Data Structures & Algorithms

Lecture 16: Topological Sort / Graph Traversals

Nicki Dell
Spring 2014

Midterm

•  This Friday in class
•  Closed books, closed notes
•  Practice midterms posted online

Spring 2014 2 CSE373: Data Structures & Algorithms

Graphs

•  A graph is a formalism for representing relationships among items
–  Very general definition because very general concept

•  A graph is a pair
 G = (V,E)

–  A set of vertices, also known as nodes
 V = {v1,v2,…,vn}

–  A set of edges
 E = {e1,e2,…,em}

•  Each edge ei is a pair of vertices
 (vj,vk)

•  An edge “connects” the vertices

•  Graphs can be directed or undirected

Spring 2014 3 CSE373: Data Structures & Algorithms

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

Density / Sparsity

•  Recall: In an undirected graph, 0 ≤ |E| < |V|2

•  Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

•  So for any graph, O(|E|+|V|2) is O(|V|2)

•  Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

•  Because |E| is often much smaller than its maximum size, we do not
always approximate |E| as O(|V|2)
–  This is a correct bound, it just is often not tight
–  If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense

•  More sloppily, dense means “lots of edges”
–  If |E| is O(|V|) we say the graph is sparse

•  More sloppily, sparse means “most possible edges missing”

Spring 2014 4 CSE373: Data Structures & Algorithms

What is the Data Structure?

•  So graphs are really useful for lots of data and questions
–  For example, “what’s the lowest-cost path from x to y”

•  But we need a data structure that represents graphs

•  The “best one” can depend on:
–  Properties of the graph (e.g., dense versus sparse)
–  The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

•  So we’ll discuss the two standard graph representations
–  Adjacency Matrix and Adjacency List
–  Different trade-offs, particularly time versus space

Spring 2014 5 CSE373: Data Structures & Algorithms

Adjacency Matrix

•  Assign each node a number from 0 to |V|-1
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

–  If M is the matrix, then M[u][v] being true
means there is an edge from u to v

Spring 2014 6 CSE373: Data Structures & Algorithms

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

•  Running time to:
–  Get a vertex’s out-edges:
–  Get a vertex’s in-edges:
–  Decide if some edge exists:
–  Insert an edge:
–  Delete an edge:

•  Space requirements:
–  |V|2 bits

•  Best for sparse or dense graphs?
–  Best for dense graphs

Spring 2014 CSE373: Data Structures & Algorithms 7

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)
O(1)

O(1)
O(1)

Adjacency Matrix Properties

•  How will the adjacency matrix vary for an undirected graph?
–  Undirected will be symmetric around the diagonal

•  How can we adapt the representation for weighted graphs?
–  Instead of a Boolean, store a number in each cell
–  Need some value to represent ‘not an edge’

•  In some situations, 0 or -1 works

Spring 2014 CSE373: Data Structures & Algorithms 8

Adjacency List

•  Assign each node a number from 0 to |V|-1
•  An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

Spring 2014 9 CSE373: Data Structures & Algorithms

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

•  Running time to:
–  Get all of a vertex’s out-edges:

 O(d) where d is out-degree of vertex
–  Get all of a vertex’s in-edges:

 O(|E|) (but could keep a second adjacency list for this!)
–  Decide if some edge exists:

 O(d) where d is out-degree of source
–  Insert an edge:
 O(1) (unless you need to check if it’s there)
–  Delete an edge:
 O(d) where d is out-degree of source

•  Space requirements:
–  O(|V|+|E|)

 Spring 2014 CSE373: Data Structures & Algorithms 10

0

1

2

3

1 /

0 /

3 1 /

/

•  Good for sparse graphs

Algorithms

Okay, we can represent graphs

Now we’ll implement some useful and non-trivial algorithms

•  Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

•  Shortest paths: Find the shortest or lowest-cost path from x to y
–  Related: Determine if there even is such a path

Spring 2014 11 CSE373: Data Structures & Algorithms

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

One example output:
 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Spring 2014 12 CSE373: Data Structures & Algorithms

Disclaimer: Do not use for official
advising purposes !

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Questions and comments

•  Why do we perform topological sorts only on DAGs?
–  Because a cycle means there is no correct answer

•  Is there always a unique answer?
–  No, there can be 1 or more answers; depends on the graph

•  Do some DAGs have exactly 1 answer?
–  Yes, including all lists

•  Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Spring 2014 13 CSE373: Data Structures & Algorithms

0

1
3

2

4

Uses

•  Figuring out how to graduate

•  Computing an order in which to recompute cells in a spreadsheet

•  Determining an order to compile files using a Makefile

•  In general, taking a dependency graph and finding an order of
execution

•  …

Spring 2014 14 CSE373: Data Structures & Algorithms

A First Algorithm for Topological Sort

1.  Label (“mark”) each vertex with its in-degree
–  Think “write in a field in the vertex”
–  Could also do this via a data structure (e.g., array) on the side

2.  While there are vertices not yet output:
a)  Choose a vertex v with labeled with in-degree of 0
b)  Output v and conceptually remove it from the graph
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u

Spring 2014 15 CSE373: Data Structures & Algorithms

Example Output:

Spring 2014 16 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126

Spring 2014 17 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142

Spring 2014 18 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143

Spring 2014 19 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374

Spring 2014 20 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373

Spring 2014 21 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417

Spring 2014 22 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410

Spring 2014 23 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413

Spring 2014 24 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ

Spring 2014 25 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ
 415

Spring 2014 26 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice

•  Needed a vertex with in-degree 0 to start
–  Will always have at least 1 because no cycles

•  Ties among vertices with in-degrees of 0 can be broken
arbitrarily
–  Can be more than one correct answer, by definition,

depending on the graph

Spring 2014 27 CSE373: Data Structures & Algorithms

Running time?

•  What is the worst-case running time?
–  Initialization O(|V|+|E|) (assuming adjacency list)
–  Sum of all find-new-vertex O(|V|2) (because each O(|V|))
–  Sum of all decrements O(|E|) (assuming adjacency list)
–  So total is O(|V|2) – not good for a sparse graph!

Spring 2014 28 CSE373: Data Structures & Algorithms

 labelEachVertexWithItsInDegree();
 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v

 w.indegree--;
 }

Doing better

The trick is to avoid searching for a zero-degree node every time!
–  Keep the “pending” zero-degree nodes in a list, stack,

queue, bag, table, or something
–  Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1.  Label each vertex with its in-degree, enqueue 0-degree nodes
2.  While queue is not empty

a)  v = dequeue()
b)  Output v and remove it from the graph
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

Spring 2014 29 CSE373: Data Structures & Algorithms

Running time?

Spring 2014 30 CSE373: Data Structures & Algorithms

•  What is the worst-case running time?
–  Initialization: O(|V|+|E|) (assuming adjacency list)
–  Sum of all enqueues and dequeues: O(|V|)
–  Sum of all decrements: O(|E|) (assuming adjacency list)
–  So total is O(|E| + |V|) – much better for sparse graph!

 labelAllAndEnqueueZeros();
 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();
 put v next in output
 for each w adjacent to v {

 w.indegree--;
 if(w.indegree==0)
 enqueue(v);
 }
 }

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable from v (i.e., there exists a path from v)
–  Possibly “do something” for each node
–  Examples: print to output, set a field, etc.

•  Subsumed problem: Is an undirected graph connected?
•  Related but different problem: Is a directed graph strongly

connected?
–  Need cycles back to starting node

Basic idea:
–  Keep following nodes
–  But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

Spring 2014 31 CSE373: Data Structures & Algorithms

Abstract Idea

Spring 2014 32 CSE373: Data Structures & Algorithms

 traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)

 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
 }

Running Time and Options

•  Assuming add and remove are O(1), entire traversal is O(|E|)
–  Use an adjacency list representation

•  The order we traverse depends entirely on add and remove
–  Popular choice: a stack “depth-first graph search” “DFS”
–  Popular choice: a queue “breadth-first graph search” “BFS”

•  DFS and BFS are “big ideas” in computer science
–  Depth: recursively explore one part before going back to the

other parts not yet explored
–  Breadth: explore areas closer to the start node first

Spring 2014 33 CSE373: Data Structures & Algorithms

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2014 34 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 
•  Exactly what we called a “pre-order traversal” for trees

–  The marking is because we support arbitrary graphs and we
want to process each node exactly once

B D E C F G H A

Example: Another Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2014 35 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS2(Node start) {
 initialize stack s and push start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

• 
•  A different but perfectly fine traversal

C F H G B E D A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2014 36 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 
•  A “level-order” traversal

B C D E F G H A

Comparison

•  Breadth-first always finds shortest paths, i.e., “optimal solutions”
–  Better for “what is the shortest path from x to y”

•  But depth-first can use less space in finding a path
–  If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements
–  But a queue for BFS may hold O(|V|) nodes

•  A third approach:
–  Iterative deepening (IDFS):

•  Try DFS but disallow recursion more than K levels deep
•  If that fails, increment K and start the entire search over

–  Like BFS, finds shortest paths. Like DFS, less space.

Spring 2014 37 CSE373: Data Structures & Algorithms

Saving the Path

•  Our graph traversals can answer the reachability question:
–  “Is there a path from node x to node y?”

•  But what if we want to actually output the path?
–  Like getting driving directions rather than just knowing it’s

possible to get there!

•  How to do it:
–  Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

–  When you reach the goal, follow path fields back to where
you started (and then reverse the answer)

–  If just wanted path length, could put the integer distance at
each node instead

Spring 2014 38 CSE373: Data Structures & Algorithms

Example using BFS

Spring 2014 39 CSE373: Data Structures & Algorithms

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Tyler
–  Remember marked nodes are not re-enqueued
–  Note shortest paths may not be unique

Chicago

Tyler

1

1

1

2
3

0

Single source shortest paths

•  Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

•  Actually, can find the minimum path length from v to every node
–  Still O(|E|+|V|)
–  No faster way for a “distinguished” destination in the worst-case

•  Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

•  As before, asymptotically no harder than for one destination

Spring 2014 40 CSE373: Data Structures & Algorithms

Applications

•  Driving directions

•  Cheap flight itineraries

•  Network routing

•  Critical paths in project management

Spring 2014 41 CSE373: Data Structures & Algorithms

Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
–  Annoying when this happens with costs of flights

Spring 2014 42 CSE373: Data Structures & Algorithms

500

100
100 100

100

We will assume there are no negative weights
•  Problem is ill-defined if there are negative-cost cycles
•  Today’s algorithm is wrong if edges can be negative

–  There are other, slower (but not terrible) algorithms

7

10 5

-11

Dijkstra’s Algorithm

•  Named after its inventor Edsger Dijkstra (1930-2002)
–  Truly one of the “founders” of computer science;

this is just one of his many contributions
–  Many people have a favorite Dijkstra story, even if they

never met him

Spring 2014 43 CSE373: Data Structures & Algorithms

Dijkstra’s Algorithm

•  The idea: reminiscent of BFS, but adapted to handle weights
–  Grow the set of nodes whose shortest distance has been

computed
–  Nodes not in the set will have a “best distance so far”
–  A priority queue will turn out to be useful for efficiency

•  An example of a greedy algorithm
–  A series of steps
–  At each one the locally optimal choice is made

Spring 2014 44 CSE373: Data Structures & Algorithms

