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Midterm   

•  This Friday in class 
•  Closed books, closed notes 
•  Practice midterms posted online 
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Graphs 

•  A graph is a formalism for representing relationships among items 
–  Very general definition because very general concept 

•  A graph is a pair 
 G = (V,E) 

–  A set of vertices, also known as nodes   
 V = {v1,v2,…,vn} 

–  A set of edges  
 E = {e1,e2,…,em} 

•  Each edge ei is a pair of vertices  
 (vj,vk) 

•  An edge “connects” the vertices 

•  Graphs can be directed or undirected 
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V = {Han,Leia,Luke} 
E = {(Luke,Leia),  
     (Han,Leia),  
     (Leia,Han)} 



Density / Sparsity 

•  Recall: In an undirected graph, 0 ≤ |E| < |V|2 

•  Recall: In a directed graph: 0 ≤ |E| ≤ |V|2 

•  So for any graph, O(|E|+|V|2) is O(|V|2) 

•  Another fact: If an undirected graph is connected, then |V|-1 ≤ |E| 

•  Because |E| is often much smaller than its maximum size, we do not 
always approximate |E| as O(|V|2) 
–  This is a correct bound, it just is often not tight 
–  If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense 

•  More sloppily, dense means “lots of edges” 
–  If |E| is O(|V|) we say the graph is sparse 

•  More sloppily, sparse means “most possible edges missing” 
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What is the Data Structure? 

•  So graphs are really useful for lots of data and questions  
–  For example, “what’s the lowest-cost path from x to y” 

•  But we need a data structure that represents graphs 

•  The “best one” can depend on: 
–  Properties of the graph (e.g., dense versus sparse) 
–  The common queries (e.g., “is (u,v) an edge?” versus 

“what are the neighbors of node u?”) 

•  So we’ll discuss the two standard graph representations 
–  Adjacency Matrix and Adjacency List 
–  Different trade-offs, particularly time versus space 
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Adjacency Matrix 

•  Assign each node a number from 0 to |V|-1 
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0) 

–  If M is the matrix, then M[u][v] being true                    
means there is an edge from u to v 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges:  
–  Get a vertex’s in-edges:  
–  Decide if some edge exists:  
–  Insert an edge: 
–  Delete an edge:  

•  Space requirements: 
–  |V|2 bits 
 

•  Best for sparse or dense graphs? 
–  Best for dense graphs 
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Adjacency Matrix Properties 

•  How will the adjacency matrix vary for an undirected graph? 
–  Undirected will be symmetric around the diagonal 

•  How can we adapt the representation for weighted graphs? 
–  Instead of a Boolean, store a number in each cell 
–  Need some value to represent ‘not an edge’ 

•  In some situations, 0 or -1 works 
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Adjacency List 

•  Assign each node a number from 0 to |V|-1 
•  An array of length |V| in which each entry stores a list of all 

adjacent vertices (e.g., linked list) 
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge:  
    O(1) (unless you need to check if it’s there)  
–  Delete an edge:  
    O(d) where d is out-degree of source  

•  Space requirements: 
–  O(|V|+|E|) 
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Algorithms 

Okay, we can represent graphs 
 
Now we’ll implement some useful and non-trivial algorithms 

•  Topological sort: Given a DAG, order all the vertices so that 
every vertex comes before all of its neighbors 

•  Shortest paths: Find the shortest or lowest-cost path from x to y 
–  Related: Determine if there even is such a path 

Spring 2014 11 CSE373: Data Structures & Algorithms 



Topological Sort 

Problem: Given a DAG G=(V,E), output all vertices in an order such 
that no vertex appears before another vertex that has an edge to it 

 
 
 
 
 
 
 
 
 
One example output: 
     126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415 
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Disclaimer: Do not use for official  
advising purposes ! 
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Questions and comments 

•  Why do we perform topological sorts only on DAGs? 
–  Because a cycle means there is no correct answer 

•  Is there always a unique answer? 
–  No, there can be 1 or more answers; depends on the graph 

•  Do some DAGs have exactly 1 answer? 
–  Yes, including all lists  

•  Terminology: A DAG represents a partial order and a topological 
sort produces a total order that is consistent with it 
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Uses 

•  Figuring out how to graduate 

•  Computing an order in which to recompute cells in a spreadsheet 

•  Determining an order to compile files using a Makefile 

•  In general, taking a dependency graph and finding an order of 
execution  

 
•  … 
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A First Algorithm for Topological Sort 

1.  Label (“mark”) each vertex with its in-degree 
–  Think “write in a field in the vertex” 
–  Could also do this via a data structure (e.g., array) on the side 

2.  While there are vertices not yet output: 
a)  Choose a vertex v with labeled with in-degree of 0 
b)  Output v and conceptually remove it from the graph 
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u 
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Example Output:  
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed? 
In-degree:    0       0     2      1       1       1     1      1      1      3 
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Example Output:  
   126 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 
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XYZ 



Example Output:  
   126 
   142 
   143 
   374 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0                                      2 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x                              x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x                     x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x              x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
   XYZ 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x              x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
   XYZ 
   415 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x      x      x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 
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MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Notice 

•  Needed a vertex with in-degree 0 to start 
–  Will always have at least 1 because no cycles 

•  Ties among vertices with in-degrees of 0 can be broken 
arbitrarily 
–  Can be more than one correct answer, by definition, 

depending on the graph 
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Running time? 

•  What is the worst-case running time? 
–  Initialization O(|V|+|E|) (assuming adjacency list) 
–  Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 
–  Sum of all decrements O(|E|) (assuming adjacency list) 
–  So total is O(|V|2) – not good for a sparse graph! 
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  labelEachVertexWithItsInDegree(); 
 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 
    put v next in output 
   for each w adjacent to v 

      w.indegree--; 
  } 



Doing better 

The trick is to avoid searching for a zero-degree node every time! 
–  Keep the “pending” zero-degree nodes in a list, stack, 

queue, bag, table, or something 
–  Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1) 

Using a queue: 
 

1.  Label each vertex with its in-degree, enqueue 0-degree nodes 
2.  While queue is not empty 

a)   v = dequeue() 
b)  Output v and remove it from the graph 
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it 
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Running time? 
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•  What is the worst-case running time? 
–  Initialization: O(|V|+|E|) (assuming adjacency list) 
–  Sum of all enqueues and dequeues: O(|V|) 
–  Sum of all decrements: O(|E|) (assuming adjacency list) 
–  So total is O(|E| + |V|) – much better for sparse graph! 
 

  labelAllAndEnqueueZeros(); 
 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 
    put v next in output 
   for each w adjacent to v { 

      w.indegree--; 
      if(w.indegree==0)  
        enqueue(v); 
    } 
  } 



Graph Traversals 

Next problem: For an arbitrary graph and a starting node v, find all 
nodes reachable from v (i.e., there exists a path from v) 
–  Possibly “do something” for each node  
–  Examples: print to output, set a field, etc. 

•  Subsumed problem: Is an undirected graph connected? 
•  Related but different problem: Is a directed graph strongly 

connected? 
–  Need cycles back to starting node 

Basic idea:  
–  Keep following nodes 
–  But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once 
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Abstract Idea 
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  traverseGraph(Node start) { 
    Set pending = emptySet() 
    pending.add(start) 

     mark start as visited 
     while(pending is not empty) { 
       next = pending.remove() 
       for each node u adjacent to next 
          if(u is not marked) { 
            mark u 
            pending.add(u) 
          } 
     } 
  } 



Running Time and Options 

•  Assuming add and remove are O(1), entire traversal is O(|E|) 
–  Use an adjacency list representation 

•  The order we traverse depends entirely on add and remove 
–  Popular choice: a stack  “depth-first graph search”  “DFS” 
–  Popular choice: a queue “breadth-first graph search” “BFS” 

•  DFS and BFS are “big ideas” in computer science 
–  Depth: recursively explore one part before going back to the 

other parts not yet explored 
–  Breadth: explore areas closer to the start node first 
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Example: Depth First Search 
•  A tree is a graph and DFS and BFS are particularly easy to “see”  
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DFS(Node start) { 
  mark and process start 
  for each node u adjacent to start 
    if u is not marked 
      DFS(u) 
} 

•    
•  Exactly what we called a “pre-order traversal” for trees 

–  The marking is because we support arbitrary graphs and we 
want to process each node exactly once 
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Example: Another Depth First Search 
•  A tree is a graph and DFS and BFS are particularly easy to “see”  
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DFS2(Node start) { 
  initialize stack s and push start 
  mark start as visited 
  while(s is not empty) { 
    next = s.pop() // and “process” 
    for each node u adjacent to next 
     if(u is not marked) 
       mark u and push onto s 
  } 
} 

•    
•  A different but perfectly fine traversal 
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Example: Breadth First Search 
•  A tree is a graph and DFS and BFS are particularly easy to “see”  
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BFS(Node start) { 
  initialize queue q and enqueue start 
  mark start as visited 
  while(q is not empty) { 
    next = q.dequeue() // and “process” 
    for each node u adjacent to next 
     if(u is not marked) 
       mark u and enqueue onto q 
  } 
} 

•    
•  A “level-order” traversal 
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Comparison 

•  Breadth-first always finds shortest paths, i.e., “optimal solutions” 
–  Better for “what is the shortest path from x to y” 

•  But depth-first can use less space in finding a path 
–  If longest path in the graph is p and highest out-degree is d 

then DFS stack never has more than d*p elements 
–  But a queue for BFS may hold O(|V|) nodes 

•  A third approach: 
–  Iterative deepening (IDFS):  

•  Try DFS but disallow recursion more than K levels deep 
•  If that fails, increment K and start the entire search over 

–  Like BFS, finds shortest paths.  Like DFS, less space. 
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Saving the Path 

•  Our graph traversals can answer the reachability question: 
–  “Is there a path from node x to node y?” 

•  But what if we want to actually output the path? 
–  Like getting driving directions rather than just knowing it’s 

possible to get there! 

•  How to do it:  
–  Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u) 

–  When you reach the goal, follow path fields back to where 
you started (and then reverse the answer) 

–  If just wanted path length, could put the integer distance at 
each node instead 
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Example using BFS 

Spring 2014 39 CSE373: Data Structures & Algorithms 

Seattle 

San Francisco 
Dallas 

Salt Lake City 

What is a path from Seattle to Tyler 
–    Remember marked nodes are not re-enqueued 
–    Note shortest paths may not be unique 

Chicago 

Tyler 
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Single source shortest paths 

•  Done: BFS to find the minimum path length from v to u in O(|E|+|V|) 

•  Actually, can find the minimum path length from v to every node   
–  Still O(|E|+|V|) 
–  No faster way for a “distinguished” destination in the worst-case 

•  Now:  Weighted graphs  

Given a weighted graph and node v,  
find the minimum-cost path from v to every node  

•  As before, asymptotically no harder than for one destination 
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Applications 

•  Driving directions 

•  Cheap flight itineraries 

•  Network routing 

•  Critical paths in project management 
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Not as easy as BFS 

Why BFS won’t work: Shortest path may not have the fewest edges 
–  Annoying when this happens with costs of flights 
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We will assume there are no negative weights 
•  Problem is ill-defined if there are negative-cost cycles 
•  Today’s algorithm is wrong if edges can be negative 

–  There are other, slower (but not terrible) algorithms 
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Dijkstra’s Algorithm 

•  Named after its inventor Edsger Dijkstra (1930-2002) 
–  Truly one of the “founders” of computer science;                

this is just one of his many contributions 
–  Many people have a favorite Dijkstra story, even if they 

never met him 
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Dijkstra’s Algorithm 

•  The idea: reminiscent of BFS, but adapted to handle weights 
–  Grow the set of nodes whose shortest distance has been 

computed 
–  Nodes not in the set will have a “best distance so far” 
–  A priority queue will turn out to be useful for efficiency 

•  An example of a greedy algorithm 
–  A series of steps 
–  At each one the locally optimal choice is made 
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