CSE373: Data Structures \& Algorithms Lecture 18: Dijkstra's Algorithm

Nicki Dell
Spring 2014

Announcements

- Homework 3 grades out today
- Homework 4 due Wednesday 11pm
- Midterm grades and feedback on Wednesday
- TA sessions
- Tuesday: help with homework 4
- Thursday: Dijkstra’s algorithm (homework 5!)

Dijkstra's Algorithm: Lowest cost paths

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it!

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight w ,
```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}
```


Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- All the "known" vertices have the correct shortest path
- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"
- While a vertex is still not known, another shorter path to it might still be found

Example \#1

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to E ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A, D, C, E, B

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		$\leqslant 6$	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Example \#3

How will the best-cost-so-far for Y proceed? $90,81,72,63,54, \ldots$ Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm is an example of a greedy algorithm:
- At each step, always does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal (for this problem)

Where are we?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false」
    start.cost = 0
    while(not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge ( \(b, a\) ) in G
        if(!a.known)
            if (b.cost + weight((b,a)) < a.cost) \{
            a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( \((\mathrm{b}, \mathrm{a}))\)
                a.path \(=\) b
        \}
\}
```


Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
        if (b.cost + weight((b,a)) < a.cost) \{
        a.cost \(=\mathrm{b}\). cost + weight( \((\mathrm{b}, \mathrm{a}))\)
                a.path \(=b\)
        \}
\}

\section*{Improving asymptotic running time}
- So far: \(O\left(|\mathrm{~V}|^{2}\right)\)
- We had a similar "problem" with topological sort being \(O\left(|\mathrm{~V}|^{2}\right)\) due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

\section*{Efficiency, second approach}

Use pseudocode to determine asymptotic run-time
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) \{
        b = deleteMin()
        b.known = true
        for each edge (b,a) in G
        if(!a.known)
        if (b.cost + weight((b,a)) < a.cost) \{
                decreaseKey (a,"new cost - old cost")
                a.path = b
            \}
\}

\section*{Efficiency, second approach}

Use pseudocode to determine asymptotic run-time
```

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost) { LO(|E|log|V|)
decreaseKey(a,"new cost - old cost")
a.path = b
}

Dense vs. sparse again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \mathrm{log}|\mathrm{V}|+|\mathrm{E}| \mathrm{log}|\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $\mathrm{O}(|\mathrm{E}| \mathrm{log}|\mathrm{V}|)$)
- Dense: $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

