

CSE373: Data Structures & Algorithms Lecture 18: Dijkstra's Algorithm

Nicki Dell Spring 2014

Announcements

- Homework 3 grades out today
- Homework 4 due Wednesday 11pm
- Midterm grades and feedback on Wednesday
- TA sessions
 - Tuesday: help with homework 4
 - Thursday: Dijkstra's algorithm (homework 5!)

Dijkstra's Algorithm: Lowest cost paths

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it!

The Algorithm

- 1. For each node \mathbf{v} , set $\mathbf{v}.\mathsf{cost} = \infty$ and $\mathbf{v}.\mathsf{known} = \mathsf{false}$
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

```
c1 = v.cost + w// cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```

Features

- When a vertex is marked known,
 the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- All the "known" vertices have the correct shortest path
 - True initially: shortest path to start node has cost 0
 - If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"
- While a vertex is still not known, another shorter path to it might still be found

Order Added to Known Set:

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A

vertex	known?	cost	path
Α	Υ	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	Α
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C

vertex	known?	cost	path
Α	Υ	0	
В		≤ 2	А
С	Y	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C, B

vertex	known?	cost	path
Α	Y	0	
В	Υ	2	Α
С	Y	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D, F

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F	Y	4	В
G		??	
Н		≤ 7	F

Order Added to Known Set:

A, C, B, D, F, H

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Υ	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Features

- When a vertex is marked known,
 the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Interpreting the Results

Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	p o.u.
A	I	U	
В	Y	2	Α
С	Υ	1	Α
D	Υ	4	Α
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Order Added to Known Set:

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Order Added to Known Set:

A

vertex	known?	cost	path
Α	Y	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	

Order Added to Known Set:

A, D

vertex	known?	cost	path
Α	Y	0	
В		≤ 6	D
С		≤ 2	Α
D	Y	1	Α
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Order Added to Known Set:

A, D, C

vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С	Υ	2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E

vertex	known?	cost	path
Α	Y	0	
В		≤ 3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B

vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F

vertex	known?	cost	path
Α	Υ	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F, G

vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G	Y	6	D

How will the best-cost-so-far for Y proceed? $90, 81, 72, 63, 54, \dots$

Is this expensive? No, each *edge* is processed only once

A Greedy Algorithm

- Dijkstra's algorithm is an example of a *greedy algorithm*:
 - At each step, always does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal (for this problem)

Where are we?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose **v** is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
 - It won't use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Improving asymptotic running time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                  O(|V|log|V|
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                  O(|E|log|V|)
        decreaseKey(a, "new cost - old cost"
         a.path = b
                                          O(|V|log|V|+|E|log|V|)
```

Dense vs. sparse again

- First approach: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|