

CSE373: Data Structures & Algorithms Lecture 19: Minimum Spanning Trees

Nicki Dell Spring 2014

Announcements

- Homework 5 is out
 - Due Wednesday May 28th
 - Partner selection due Wednesday May 21st
 - Ask your partner about late days before you start

Minimum Spanning Trees

The minimum-spanning-tree problem

Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph G=(V,E), find a graph G'=(V, E') such that:

- E' is a subset of E
- |E'| = |V| 1
- G' is connected

G' is a minimum spanning tree.

Two different approaches

Prim's Algorithm Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!

Spring 2014

Prim's Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. *Pick the vertex with the smallest cost that connects "known" to "unknown."*

A node-based greedy algorithm

Builds MST by greedily adding nodes

Prim's vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.

Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

Otherwise identical ③

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Choose any node \mathbf{v}
 - a) Mark **v** as known
 - b) For each edge (v,u) with weight w, set u.cost=w and u.prev=v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node \mathbf{v} with lowest cost
 - b) Mark **v** as known and add (**v**, **v.prev**) to output
 - c) For each edge (v, u) with weight w,

```
if(w < u.cost) {
    u.cost = w;
    u.prev = v;
}</pre>
```


vertex	known?	cost	prev
А		??	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

vertex	known?	cost	prev
А	Y	0	
В		2	А
С		2	А
D		1	А
Е		??	
F		??	
G		??	

vertex	known?	cost	prev
А	Y	0	
В		2	А
С		1	D
D	Y	1	А
Е		1	D
F		6	D
G		5	D

vertex	known?	cost	prev
А	Y	0	
В		2	А
С	Y	1	D
D	Y	1	А
E		1	D
F		2	С
G		5	D

vertex	known?	cost	prev
А	Y	0	
В		1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	Е

vertex	known?	cost	prev
А	Y	0	
В	Y	1	Ш
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	E

vertex	known?	cost	prev
А	Y	0	
В	Y	1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G		3	E

vertex	known?	cost	prev
А	Y	0	
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G	Y	3	E

Analysis

- Correctness
 - A bit tricky
 - Intuitively similar to Dijkstra

- Run-time
 - Same as Dijkstra
 - O(|E|log|V|) using a priority queue
 - Costs/priorities are just edge-costs, not path-costs

Another Example

A cable company wants to connect five villages to their network which currently extends to the town of Avonford. What is the minimum length of cable needed?

Model the situation as a graph and find the MST that connects all the villages (nodes).

Select any vertex

Α

Select the shortest edge connected to that vertex

AB 3

Select the shortest edge that connects an unknown vertex to any known vertex.

AE 4

Select the shortest edge that connects an unknown vertex to any known vertex.

ED 2

Select the shortest edge that connects an unknown vertex to any known vertex.

DC 4

Select the shortest edge that connects an unknown vertex to any known vertex.

Minimum Spanning Tree Algorithms

- Prim's Algorithm for Minimum Spanning Tree
 - Similar idea to Dijkstra's Algorithm but for MSTs.
 - Both based on expanding cloud of known vertices
 (basically using a priority queue instead of a DFS stack)
- Kruskal's Algorithm for Minimum Spanning Tree
 - Another, but different, greedy MST algorithm.
 - Uses the Union-Find data structure.

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

An edge-based greedy algorithm Builds MST by greedily adding edges

Kruskal's Algorithm Pseudocode

- 1. Sort edges by weight (better: put in min-heap)
- 2. Each node in its own set
- 3. While output size < |V|-1
 - Consider next smallest edge (u,v)
 - if find(u) and find(v) indicate u and v are in different sets
 - output (u,v)
 - union(find(u),find(v))

Recall invariant:

 ${\bf u}$ and ${\bf v}$ in same set if and only if connected in output-so-far

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- **2**: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Spring 2014

Kruskal's Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: O(|E|log |E|) (next course topic)
- Iterate through edges using union-find for cycle detection almost O(|E|)

Somewhat better:

- Floyd's algorithm to build min-heap with edges O(|E|)
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge O(|E|log|E|)
- Not better *worst-case* asymptotically, but often stop long before considering all edges.

List the edges in order of size:

Done with graph algorithms!

Next lecture...

- Sorting
- More sorting
- Even more sorting

