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Announcements 

 
•  Homework 5 is out 

–  Due Wednesday May 28th  
–  Partner selection due Wednesday May 21st 
–  Ask your partner about late days before you start 
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Minimum Spanning Trees 

The minimum-spanning-tree problem 
–  Given a weighted undirected graph, compute a spanning 

tree of minimum weight 
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Two different approaches 
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Prim’s Algorithm Idea 
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Prim’s vs. Dijkstra’s 

Recall:  
 
Dijkstra picked the unknown vertex with smallest cost where  
cost = distance to the source.  
 
Prim’s pick the unknown vertex with smallest cost where  
cost = distance from this vertex to the known set  
(in other words, the cost of the smallest edge connecting this vertex 

to the known set) 
 
Otherwise identical J  
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Prim’s Algorithm 
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1.  For each node v, set  v.cost = ∞ and v.known = false 
2.  Choose any node v  

a)  Mark v as known 
b)  For each edge (v,u) with weight w, set u.cost=w and 

u.prev=v 
3.  While there are unknown nodes in the graph 

a)  Select the unknown node v with lowest cost 
b)  Mark v as known and add (v, v.prev) to output 
c)  For each edge (v,u) with weight w, 

      if(w < u.cost) { 
          u.cost = w; 
     u.prev = v; 
      } 
  



Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Analysis 

•  Correctness  
–  A bit tricky 
–  Intuitively similar to Dijkstra 

•  Run-time 
–  Same as Dijkstra 
–  O(|E|log|V|) using a priority queue 

•  Costs/priorities are just edge-costs, not path-costs 
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A cable company wants to connect five villages to their network     
which currently extends to the town of Avonford. What is the 
minimum length of cable needed? 

Avonford Fingley 

Brinleigh Cornwell 

Donster 

Edan 

2 

7 

4 
5 

8 6 4 
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Another Example 
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Prim’s Algorithm 

Model the situation as a 
graph and find the MST 
that connects all the 
villages (nodes). 
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Select any vertex 
 
A 
 
Select the shortest 
edge connected to 
that vertex 
 
AB  3 
 
 
 

Prim’s Algorithm 
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Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
AE  4 
 
 
 

Prim’s Algorithm 



Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
ED  2 
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Prim’s Algorithm 



Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
DC  4 
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Prim’s Algorithm 



Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
EF  5   
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Prim’s Algorithm 
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All vertices have been 
connected. 
 
The solution is 
 
AB 3 
AE 4 
ED 2 
DC 4 
EF 5 
 
 
Total weight of tree: 18 
 

Prim’s Algorithm 



Minimum Spanning Tree Algorithms 

•  Prim’s Algorithm for Minimum Spanning Tree 
–  Similar idea to Dijkstra’s Algorithm but for MSTs. 
–  Both based on expanding cloud of known vertices  

 (basically using a priority queue instead of a DFS stack) 

•  Kruskal’s Algorithm for Minimum Spanning Tree 
–  Another, but different, greedy MST algorithm.  
–  Uses the Union-Find data structure.  
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Kruskal’s Algorithm 
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Kruskal’s Algorithm Pseudocode 

1.  Sort edges by weight (better: put in min-heap) 
2.  Each node in its own set 
3.  While output size < |V|-1 

–  Consider next smallest edge (u,v) 
–  if find(u) and find(v) indicate u and v are in different 

sets 
•   output (u,v) 
•   union(find(u),find(v)) 

Recall invariant:  
 u and v in same set if and only if connected in output-so-far 
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Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  

Spring 2014 33 CSE373: Data Structures & Algorithms 

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 
1 

1 

2 6 
5 3 

10 

Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Algorithm Analysis 
Idea: Grow a forest out of edges that do not grow a cycle, just like for 

the spanning tree problem.   
–  But now consider the edges in order by weight 

 

So:  
–  Sort edges: O(|E|log |E|) (next course topic) 
–  Iterate through edges using union-find for cycle detection 

almost O(|E|) 
 

Somewhat better: 
–  Floyd’s algorithm to build min-heap with edges O(|E|) 
–  Iterate through edges using union-find for cycle detection and 
deleteMin to get next edge O(|E| log |E|) 

–  Not better worst-case asymptotically, but often stop long 
before considering all edges. 
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List the edges in 
order of size: 
 
ED  2 
AB  3 
AE  4 
CD  4 
BC  5 
EF  5 
CF  6 
AF  7 
BF  8 
CF  8 
 

Kruskal’s Algorithm 



Select the edge 
with min cost 
 
ED  2 
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Kruskal’s Algorithm 



Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
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Kruskal’s Algorithm 



Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
CD  4 (or AE  4) 
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Kruskal’s Algorithm 



Select the next  
minimum cost 
edge that does not 
create a cycle 
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AB  3 
CD  4  
AE  4 
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Kruskal’s Algorithm 



Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
CD  4  
AE  4 
BC  5 – forms a cycle 
EF  5 
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Kruskal’s Algorithm 



All vertices have been 
connected. 
 
The solution is 
 
ED  2 
AB  3 
CD  4  
AE  4 
EF  5 
 
 
Total weight of tree: 18 
 

A F 

B C 

D 

E 

2 

7 

4 
5 

8 6 4 

5 

3 

8 

Kruskal’s Algorithm 



Done with graph algorithms! 

Next lecture… 
•  Sorting 
•  More sorting 
•  Even more sorting 

 J 
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