
CSE373: Data Structures & Algorithms

Lecture 19: Minimum Spanning Trees

Nicki Dell
Spring 2014

Announcements

•  Homework 5 is out

–  Due Wednesday May 28th
–  Partner selection due Wednesday May 21st
–  Ask your partner about late days before you start

Spring 2014 2 CSE373: Data Structures & Algorithms

Minimum Spanning Trees

The minimum-spanning-tree problem
–  Given a weighted undirected graph, compute a spanning

tree of minimum weight

Spring 2014 3 CSE373: Data Structures & Algorithms

Two different approaches

Spring 2014 4 CSE373: Data Structures & Algorithms

Prim’s Algorithm Idea

Spring 2014 5 CSE373: Data Structures & Algorithms

Prim’s vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set
(in other words, the cost of the smallest edge connecting this vertex

to the known set)

Otherwise identical J

Spring 2014 6 CSE373: Data Structures & Algorithms

Prim’s Algorithm

Spring 2014 7 CSE373: Data Structures & Algorithms

1.  For each node v, set v.cost = ∞ and v.known = false
2.  Choose any node v

a)  Mark v as known
b)  For each edge (v,u) with weight w, set u.cost=w and

u.prev=v
3.  While there are unknown nodes in the graph

a)  Select the unknown node v with lowest cost
b)  Mark v as known and add (v, v.prev) to output
c)  For each edge (v,u) with weight w,

 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

Prim’s Example

Spring 2014 8 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

∞

∞

∞

∞
∞

∞

2

1
2

vertex known? cost prev
A ??
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

∞

Prim’s Example

Spring 2014 9 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 2

∞

2

1
∞

∞

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 10 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 11 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 12 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 13 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 14 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

Spring 2014 15 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

Analysis

•  Correctness
–  A bit tricky
–  Intuitively similar to Dijkstra

•  Run-time
–  Same as Dijkstra
–  O(|E|log|V|) using a priority queue

•  Costs/priorities are just edge-costs, not path-costs

Spring 2014 16 CSE373: Data Structures & Algorithms

A cable company wants to connect five villages to their network
which currently extends to the town of Avonford. What is the
minimum length of cable needed?

Avonford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8 6 4

5

3

8

Another Example

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

Model the situation as a
graph and find the MST
that connects all the
villages (nodes).

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select any vertex

A

Select the shortest
edge connected to
that vertex

AB 3

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

AE 4

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

ED 2

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

DC 4

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

EF 5

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18

Prim’s Algorithm

Minimum Spanning Tree Algorithms

•  Prim’s Algorithm for Minimum Spanning Tree
–  Similar idea to Dijkstra’s Algorithm but for MSTs.
–  Both based on expanding cloud of known vertices

 (basically using a priority queue instead of a DFS stack)

•  Kruskal’s Algorithm for Minimum Spanning Tree
–  Another, but different, greedy MST algorithm.
–  Uses the Union-Find data structure.

Spring 2014 25 CSE373: Data Structures & Algorithms

Kruskal’s Algorithm

Spring 2014 26 CSE373: Data Structures & Algorithms

Kruskal’s Algorithm Pseudocode

1.  Sort edges by weight (better: put in min-heap)
2.  Each node in its own set
3.  While output size < |V|-1

–  Consider next smallest edge (u,v)
–  if find(u) and find(v) indicate u and v are in different

sets
•  output (u,v)
•  union(find(u),find(v))

Recall invariant:
 u and v in same set if and only if connected in output-so-far

Spring 2014 27 CSE373: Data Structures & Algorithms

Kruskal’s Example

Spring 2014 28 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 29 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 30 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 31 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 32 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 33 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 34 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 35 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Spring 2014 36 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Algorithm Analysis
Idea: Grow a forest out of edges that do not grow a cycle, just like for

the spanning tree problem.
–  But now consider the edges in order by weight

So:
–  Sort edges: O(|E|log |E|) (next course topic)
–  Iterate through edges using union-find for cycle detection

almost O(|E|)

Somewhat better:
–  Floyd’s algorithm to build min-heap with edges O(|E|)
–  Iterate through edges using union-find for cycle detection and
deleteMin to get next edge O(|E| log |E|)

–  Not better worst-case asymptotically, but often stop long
before considering all edges.

Spring 2014 37 CSE373: Data Structures & Algorithms

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

List the edges in
order of size:

ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

Kruskal’s Algorithm

Select the edge
with min cost

ED 2

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3

 A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4 (or AE 4)

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4
AE 4

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

All vertices have been
connected.

The solution is

ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

Done with graph algorithms!

Next lecture…
•  Sorting
•  More sorting
•  Even more sorting

 J

Spring 2014 45 CSE373: Data Structures & Algorithms

