
CSE373: Data Structures & Algorithms

Lecture 11: Implementing Union-Find

Aaron Bauer
Winter 2014

Extra office hours

•  Tuesday, 4:30-5:30, Bagley 154
•  Thursday, 4:30-5:30, Bagley 154

Winter 2014 2 CSE373: Data Structures & Algorithms

Union-Find

•  Given an unchanging set S, create an initial partition of a set
–  Typically each item in its own subset: {a}, {b}, {c}, …
–  Give each subset a “name” by choosing a representative

element

•  Operation find takes an element of S and returns the
representative element of the subset it is in

•  Operation union takes two subsets and (permanently) makes
one larger subset
–  A different partition with one fewer set
–  Affects result of subsequent find operations
–  Choice of representative element up to implementation

Winter 2014 3 CSE373: Data Structures & Algorithms

Example application: maze-building

•  Build a random maze by erasing edges

–  Possible to get from anywhere to anywhere
•  Including “start” to “finish”

–  No loops possible without backtracking
•  After a “bad turn” have to “undo”

Winter 2014 4 CSE373: Data Structures & Algorithms

Problems with this approach

1.  How can you tell when there is a path from start to finish?
–  We do not really have an algorithm yet

2.  We have cycles, which a “good” maze avoids
–  Want one solution and no cycles

Winter 2014 5 CSE373: Data Structures & Algorithms

Start

End

Revised approach
•  Consider edges in random order

•  But only delete them if they introduce no cycles (how? TBD)

•  When done, will have one way to get from any place to any
other place (assuming no backtracking)

•  Notice the funny-looking tree in red

Winter 2014 6 CSE373: Data Structures & Algorithms

Start

End

Cells and edges

•  Let’s number each cell
–  36 total for 6 x 6

•  An (internal) edge (x,y) is the line between cells x and y
–  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Winter 2014 7 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

The trick

•  Partition the cells into disjoint sets: “are they connected”
–  Initially every cell is in its own subset

•  If an edge would connect two different subsets:
–  then remove the edge and union the subsets
–  else leave the edge because removing it makes a cycle

Winter 2014 8 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm

•  P = disjoint sets of connected cells, initially each cell in its own
1-element set

•  E = set of edges not yet processed, initially all (internal) edges
•  M = set of edges kept in maze (initially empty)

while P has more than one set {
–  Pick a random edge (x,y) to remove from E
–  u = find(x)
–  v = find(y)
–  if u==v
 then add (x,y) to M // same subset, do not create cycle
 else union(u,v) // do not put edge in M, connect subsets

}
Add remaining members of E to M, then output M as the maze

Winter 2014 9 CSE373: Data Structures & Algorithms

Example step

Winter 2014 10 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick (8,14)

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Example step

Winter 2014 11 CSE373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Find(8) = 7
Find(14) = 20

Union(7,20)

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Add edge to M step

Winter 2014 12 CSE373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Pick (19,20)

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

At the end

•  Stop when P has one set
•  Suppose green edges are already in M and black edges were

not yet picked
–  Add all black edges to M

Winter 2014 13 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

Other applications

•  Maze-building is:
–  Cute
–  Homework 4 J
–  A surprising use of the union-find ADT

•  Many other uses (which is why an ADT taught in CSE373):
–  Road/network/graph connectivity (will see this again)

•  “connected components” e.g., in social network
–  Partition an image by connected-pixels-of-similar-color
–  Type inference in programming languages

•  Not as common as dictionaries, queues, and stacks, but
valuable because implementations are very fast, so when
applicable can provide big improvements

Winter 2014 14 CSE373: Data Structures & Algorithms

The plan

Last lecture:

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

Now:

•  Applications of union-find

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Winter 2014 15 CSE373: Data Structures & Algorithms

Implementation – our goal

•  Start with an initial partition of n subsets
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

•  May have m find operations and up to n-1 union operations in
any order
–  After n-1 union operations, every find returns same 1 set

•  If total for all these operations is O(m+n), then amortized O(1)
–  We will get very, very close to this
–  O(1) worst-case is impossible for find and union

•  Trivial for one or the other

Winter 2014 16 CSE373: Data Structures & Algorithms

Up-tree data structure

•  Tree with:
–  No limit on branching factor
–  References from children to parent

•  Start with forest of 1-node trees

•  Possible forest after several unions:
–  Will use roots for
 set names

Winter 2014 17 CSE373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

4 5

6

7

Find

find(x):
–  Assume we have O(1) access to each node

•  Will use an array where index i holds node i
–  Start at x and follow parent pointers to root
–  Return the root

Winter 2014 18 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

find(6) = 7

Union
union(x,y):

–  Assume x and y are roots
•  Else find the roots of their trees

–  Assume distinct trees (else do nothing)
–  Change root of one to have parent be the root of the other

•  Notice no limit on branching factor

Winter 2014 19 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

Simple implementation

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use an
array of length n called up
–  Starting at index 1 on slides
–  Put in array index of parent, with 0 (or -1, etc.) for a root

•  Example:

•  Example:

•  If set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)

Winter 2014 20 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7 0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0
1 2 3 4 5 6 7

up

Implement operations

•  Worst-case run-time for union?

•  Worst-case run-time for find?

•  Worst-case run-time for m finds and n-1 unions?

Winter 2014 21 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;

}

Implement operations

•  Worst-case run-time for union? O(1)

•  Worst-case run-time for find?

•  Worst-case run-time for m finds and n-1 unions?

Winter 2014 22 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;

}

Implement operations

•  Worst-case run-time for union? O(1)

•  Worst-case run-time for find? O(n)

•  Worst-case run-time for m finds and n-1 unions?

Winter 2014 23 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;

}

Implement operations

•  Worst-case run-time for union? O(1)

•  Worst-case run-time for find? O(n)

•  Worst-case run-time for m finds and n-1 unions? O(n*m)

Winter 2014 24 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;

}

The plan

Last lecture:

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

•  Applications of union-find

Now:

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Winter 2014 25 CSE373: Data Structures & Algorithms

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

Winter 2014 26 CSE373: Data Structures & Algorithms

The bad case to avoid

Winter 2014 27 CSE373: Data Structures & Algorithms

1 2 3 n …

1

2 3 n union(2,1)

1

2

3 n
union(3,2)

union(n,n-1)

…

…

1

2

3

n

:
.

find(1) n steps!!

Union-by-size

Union-by-size:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

Winter 2014 28 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

union(1,7)

2 4 1

Union-by-size

Union-by-size:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

Winter 2014 29 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

6 1

Array implementation

Keep the size (number of nodes in a second array)
–  Or have one array of objects with two fields

Winter 2014 30 CSE373: Data Structures & Algorithms

1

2

3 2 1
0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight
4 5

6

7 4

1

2

3 1
7
2

1 0
1

7 7 5 0
6

up
weight

4 5

6

7 6

Nifty trick

Actually we do not need a second array…
–  Instead of storing 0 for a root, store negation of size
–  So up value < 0 means a root

Winter 2014 31 CSE373: Data Structures & Algorithms

1

2

3 2 1

-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

up 4 5

6

7 4

1

2

3 1

7 1 -1 7 7 5 -6 up 4 5

6

7 6

Bad example? Great example…

Winter 2014 32 CSE373: Data Structures & Algorithms

union(2,1)

union(3,2)

union(n,n-1)

:

find(1) constant here

1 2 3 n

1

2 3 n

1

2

3

n

…

…

1

2

3 n …

General analysis

•  Showing one worst-case example is now good is not a proof
that the worst-case has improved

•  So let’s prove:
–  union is still O(1) – this is “obvious”
–  find is now O(log n)

•  Claim: If we use union-by-size, an up-tree of height h has at
least 2h nodes
–  Proof by induction on h…

Winter 2014 33 CSE373: Data Structures & Algorithms

Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2h nodes

Proof by induction on h…

•  Base case: h = 0: The up-tree has 1 node and 20= 1
•  Inductive case: Assume P(h) and show P(h+1)

–  A height h+1 tree T has at least one height h child T1
–  T1 has at least 2h nodes by induction
–  And T has at least as many nodes not in T1 than in T1

•  Else union-by-size would have
 had T point to T1, not T1 point to T (!!)

–  So total number of nodes is at least 2h + 2h = 2h+1
.

Winter 2014 34 CSE373: Data Structures & Algorithms

h
T1

T

The key idea

Intuition behind the proof: No one child can have more than half the
nodes

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So find is O(log n)

Winter 2014 35 CSE373: Data Structures & Algorithms

h
T1

T

The new worst case

Winter 2014 36 CSE373: Data Structures & Algorithms

n/2 Unions-by-size

n/4 Unions-by-size

The new worst case (continued)

Winter 2014 37 CSE373: Data Structures & Algorithms

After n/2 + n/4 + …+ 1 Unions-by-size:

Worst
find Height grows by 1 a total of log n times

log n

What about union-by-height

We could store the height of each root rather than size

•  Still guarantees logarithmic worst-case find

–  Proof left as an exercise if interested

•  But does not work well with our next optimization
–  Maintaining height becomes inefficient, but maintaining size

still easy

Winter 2014 38 CSE373: Data Structures & Algorithms

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

Winter 2014 39 CSE373: Data Structures & Algorithms

Path compression

•  Simple idea: As part of a find, change each encountered
node’s parent to point directly to root
–  Faster future finds for everything on the path (and their

descendants)

Winter 2014 40 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

find(3)

8 9

10

1

2 3 4 5 6

7

8 9 10

11 12

11 12

Pseudocode

Winter 2014 41 CSE373: Data Structures & Algorithms

// performs path compression
int find(i) {
 // find root
 int r = i
 while(up[r] > 0)
 r = up[r]
 // compress path
 if i==r
 return r;
 int old_parent = up[i]
 while(old_parent != r) {
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 }
 return r;
}

So, how fast is it?

A single worst-case find could be O(log n)
–  But only if we did a lot of worst-case unions beforehand
–  And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)
–  We won’t prove it – see text if curious
–  But we will understand it:

•  How it is almost O(1)
•  Because total for m finds and n-1 unions is almost O(m+n)

Winter 2014 42 CSE373: Data Structures & Algorithms

A really slow-growing function

log* x is the minimum number of times you need to apply “log of
log of log of” to go from x to a number <= 1

For just about every number we care about, log* x is 5 (!)
If x <= 265536 then log* x <= 5

–  log* 2 = 1
–  log* 4 = log* 22 = 2
–  log* 16 = log* 2(22) = 3 (log log log 16 = 1)
–  log* 65536 = log* 2((22)2) = 4 (log log log log 65536 = 1)
–  log* 265536 = …………… = 5

Winter 2014 43 CSE373: Data Structures & Algorithms

Almost linear

•  Turns out total time for m finds and n-1 unions is O((m
+n)*(log* (m+n))
–  Remember, if m+n < 265536 then log* (m+n) < 5

•  At this point, it feels almost silly to mention it, but even that
bound is not tight…
–  “Inverse Ackerman’s function” grows even more slowly than
log*

•  Inverse because Ackerman’s function grows really fast
•  Function also appears in combinatorics and geometry
•  For any number you can possibly imagine, it is < 4

–  Can replace log* with “Inverse Ackerman’s” in bound

Winter 2014 44 CSE373: Data Structures & Algorithms

Theory and terminology

•  Because log* or Inverse Ackerman’s grows soooo slowly
–  For all practical purposes, amortized bound is constant, i.e.,

total cost is linear
–  We say “near linear” or “effectively linear”

•  Need union-by-size and path-compression for this bound
–  Path-compression changes height but not weight, so they

interact well

•  As always, asymptotic analysis is separate from “coding it up”

Winter 2014 45 CSE373: Data Structures & Algorithms

