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Extra office hours 

•  Tuesday, 4:30-5:30, Bagley 154 
•  Thursday, 4:30-5:30, Bagley 154 
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Union-Find 

•  Given an unchanging set S, create an initial partition of a set 
–  Typically each item in its own subset: {a}, {b}, {c}, … 
–  Give each subset a “name” by choosing a representative 

element 

•  Operation find takes an element of S and returns the 
representative element of the subset it is in 

•  Operation union takes two subsets and (permanently) makes 
one larger subset 
–  A different partition with one fewer set 
–  Affects result of subsequent find operations 
–  Choice of representative element up to implementation 
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Example application: maze-building 

•  Build a random maze by erasing edges 

–  Possible to get from anywhere to anywhere 
•  Including “start” to “finish” 

–  No loops possible without backtracking 
•  After a “bad turn” have to “undo” 
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Problems with this approach 

1.  How can you tell when there is a path from start to finish? 
–  We do not really have an algorithm yet 

2.  We have cycles, which a “good” maze avoids 
–  Want one solution and no cycles 
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Revised approach 
•  Consider edges in random order 

•  But only delete them if they introduce no cycles (how? TBD) 

•  When done, will have one way to get from any place to any 
other place (assuming no backtracking) 

•  Notice the funny-looking tree in red 
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Cells and edges 

•  Let’s number each cell 
–  36 total for 6 x 6 

•  An (internal) edge (x,y) is the line between cells x and y  
–  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), … 
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The trick 

•  Partition the cells into disjoint  sets: “are they connected” 
–  Initially every cell is in its own subset 

•  If an edge would connect two different subsets: 
–  then remove the edge and union the subsets 
–  else leave the edge because removing it makes a cycle 
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The algorithm 

•  P = disjoint sets of connected cells, initially each cell in its own 
1-element set 

•  E = set of edges not yet processed, initially all (internal) edges 
•  M = set of edges kept in maze (initially empty) 
 

while P has more than one set { 
–  Pick a random edge (x,y) to remove from E 
–  u = find(x) 
–  v = find(y) 
–  if u==v 
    then add (x,y) to M // same subset, do not create cycle 
    else union(u,v) // do not put edge in M, connect subsets 

} 
Add remaining members of E to M, then output M as the maze 
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Example step 
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Pick (8,14) 

P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 



Example step 
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P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Find(8) = 7 
Find(14) = 20 

Union(7,20) 

P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 



Add edge to M step 
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P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Pick (19,20) 

Start 

End 
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At the end 

•  Stop when P has one set 
•  Suppose green edges are already in M and black edges were 

not yet picked 
–  Add all black edges to M 
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P 
{1,2,3,4,5,6,7,… 36} 



Other applications 

•  Maze-building is: 
–  Cute 
–  Homework 4 J 
–  A surprising use of the union-find ADT 

•  Many other uses (which is why an ADT taught in CSE373): 
–  Road/network/graph connectivity (will see this again) 

•  “connected components” e.g., in social network 
–  Partition an image by connected-pixels-of-similar-color 
–  Type inference in programming languages 

•  Not as common as dictionaries, queues, and stacks, but 
valuable because implementations are very fast, so when 
applicable can provide big improvements 
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The plan 

Last lecture: 
 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 
 
Now: 
 

•  Applications of union-find 
 

•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Implementation – our goal 

•  Start with an initial partition of n subsets 
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n} 

•  May have m find operations and up to n-1 union operations in 
any order 
–  After n-1 union operations, every find returns same 1 set 

•  If total for all these operations is O(m+n), then amortized O(1)  
–  We will get very, very close to this 
–  O(1) worst-case is impossible for find and union 

•  Trivial for one or the other 
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Up-tree data structure 

•  Tree with: 
–  No limit on branching factor  
–  References from children to parent 

•  Start with forest of 1-node trees 

•  Possible forest after several unions: 
–  Will use roots for 
    set names 
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Find  

find(x): 
–  Assume we have O(1) access to each node 

•  Will use an array where index i holds node i 
–  Start at x and follow parent pointers to root 
–  Return the root 
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Union 
union(x,y): 

–  Assume x and y are roots 
•  Else find the roots of their trees 

–  Assume distinct trees (else do nothing) 
–  Change root of one to have parent be the root of the other 

•  Notice no limit on branching factor 
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Simple implementation 

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use an 
array of length n called up 
–  Starting at index 1 on slides 
–  Put in array index of parent, with 0 (or -1, etc.) for a root 

•  Example: 

•  Example: 

•  If set elements are not contiguous numbers, could have a 
separate dictionary to map elements (keys) to numbers (values) 
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Implement operations 

•  Worst-case run-time for union? 

•  Worst-case run-time for find? 

•  Worst-case run-time for m finds and n-1 unions? 
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 

} 
  



Implement operations 

•  Worst-case run-time for union?  O(1) 

•  Worst-case run-time for find?   

•  Worst-case run-time for m finds and n-1 unions?  
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 

} 
  



Implement operations 

•  Worst-case run-time for union?  O(1) 

•  Worst-case run-time for find?  O(n) 

•  Worst-case run-time for m finds and n-1 unions?  
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 

} 
  



Implement operations 

•  Worst-case run-time for union?  O(1) 

•  Worst-case run-time for find?  O(n) 

•  Worst-case run-time for m finds and n-1 unions?  O(n*m) 
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 

} 
  



The plan 

Last lecture: 
 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 

•  Applications of union-find 

Now: 
 

•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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The bad case to avoid 
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Union-by-size 

Union-by-size: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Union-by-size 

Union-by-size: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Array implementation 

Keep the size (number of nodes in a second array) 
–  Or have one array of objects with two fields 
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Nifty trick 

Actually we do not need a second array… 
–  Instead of storing 0 for a root, store negation of size 
–  So up value < 0 means a root 
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Bad example? Great example… 
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General analysis 

•  Showing one worst-case example is now good is not a proof 
that the worst-case has improved 

•  So let’s prove: 
–  union is still O(1) – this is “obvious” 
–  find is now O(log n)  

•  Claim: If we use union-by-size, an up-tree of height h has at 
least 2h nodes 
–  Proof by induction on h… 
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Exponential number of nodes 

P(h)= With union-by-size, up-tree of height h has at least 2h nodes 

Proof by induction on h… 
 

•  Base case: h = 0: The up-tree has 1 node and 20= 1 
•  Inductive case: Assume P(h) and show P(h+1) 

–  A height h+1 tree T has at least one height h child T1 
–  T1 has at least 2h nodes by induction 
–  And T has at least as many nodes not in T1 than in T1 

•  Else union-by-size would have  
   had T point to T1, not T1 point to T (!!) 

–  So total number of nodes is at least 2h + 2h = 2h+1
. 
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The key idea 

Intuition behind the proof: No one child can have more than half the 
nodes 
 
 
 
 
 
So, as usual, if number of nodes is exponential in height, 
then height is logarithmic in number of nodes 
 
So find is O(log n)  
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The new worst case 
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n/2 Unions-by-size 
 
 
 
 
n/4 Unions-by-size 



The new worst case (continued) 
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After n/2 + n/4 + …+ 1 Unions-by-size: 

Worst 
find Height grows by 1 a total of log n times 

log n 



What about union-by-height 

We could store the height of each root rather than size 
 
•  Still guarantees logarithmic worst-case find 

–  Proof left as an exercise if interested 

•  But does not work well with our next optimization 
–  Maintaining height becomes inefficient, but maintaining size 

still easy 
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Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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Path compression 

•  Simple idea: As part of a find, change each encountered 
node’s parent to point directly to root 
–  Faster future finds for everything on the path (and their 

descendants) 
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Pseudocode 
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// performs path compression 
int find(i) { 
  // find root 
  int r = i 
   while(up[r] > 0) 
     r = up[r] 
  // compress path 
  if i==r 
    return r; 
  int old_parent = up[i] 
  while(old_parent != r) { 
    up[i] = r 
    i = old_parent; 
    old_parent = up[i] 
  } 
  return r; 
} 
  



So, how fast is it? 

A single worst-case find could be O(log n)  
–  But only if we did a lot of worst-case unions beforehand 
–  And path compression will make future finds faster 

Turns out the amortized worst-case bound is much better than O(log n)  
–  We won’t prove it – see text if curious 
–  But we will understand it: 

•  How it is almost O(1) 
•  Because total for m finds and n-1 unions is almost O(m+n) 
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A really slow-growing function 

log* x is the minimum number of times you need to apply “log of 
log of log of” to go from x to a number <= 1 
 
For just about every number we care about, log* x is 5 (!) 
If x <= 265536 then log* x <= 5 

–  log* 2 = 1 
–  log* 4 = log* 22 = 2 
–  log* 16 = log* 2(22) = 3           (log log log 16 = 1) 
–  log* 65536 = log* 2((22)2) = 4    (log log log log 65536 = 1) 
–  log* 265536 = …………… = 5 
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Almost linear 

•  Turns out total time for m finds and n-1 unions is O((m
+n)*(log* (m+n)) 
–  Remember, if m+n < 265536 then log* (m+n) < 5 

•  At this point, it feels almost silly to mention it, but even that 
bound is not tight… 
–  “Inverse Ackerman’s function” grows even more slowly than 
log*  

•  Inverse because Ackerman’s function grows really fast 
•  Function also appears in combinatorics and geometry 
•  For any number you can possibly imagine, it is < 4 

–  Can replace log* with “Inverse Ackerman’s” in bound 
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Theory and terminology 

•  Because log* or Inverse Ackerman’s grows soooo slowly 
–  For all practical purposes, amortized bound is constant, i.e., 

total cost is linear 
–  We say “near linear” or “effectively linear” 

•  Need union-by-size and path-compression for this bound 
–  Path-compression changes height but not weight, so they 

interact well 

•  As always, asymptotic analysis is separate from “coding it up” 
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