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Announcements 

•  Homework 3 due at 11 p.m. (or later with late days) 
•  Homework 4 has been posted (due Feb. 20) 

–  Can be done with a partner 
–  Partner selection due Feb. 12 
–  Partner form linked from homework 
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Hash Tables: Review 

•  Aim for constant-time (i.e., O(1)) find, insert, and delete 
–  “On average” under some reasonable assumptions 

•  A hash table is an array of some fixed size 
–  But growable as we’ll see 
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One expert suggestion 

•  int result = 17; 
•  foreach field f 

–  int fieldHashcode = 
•  boolean: (f ? 1: 0) 
•  byte, char, short, int: (int) f 
•  long: (int) (f ^ (f >>> 32)) 
•  float: Float.floatToIntBits(f) 
•  double: Double.doubleToLongBits(f), then above 
•  Object: object.hashCode( ) 

–  result = 31 * result + fieldHashcode 
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Collision resolution 

Collision:  
 When two keys map to the same location in the hash table 

 
We try to avoid it, but number-of-keys exceeds table size 
 
So hash tables should support collision resolution 

–  Ideas? 
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Separate Chaining 
Chaining: 

All keys that map to the same 
table location are kept in a list 
(a.k.a. a “chain” or “bucket”) 

 
As easy as it sounds 

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10 
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Separate Chaining 
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Separate Chaining 
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Separate Chaining 
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Thoughts on chaining 

•  Worst-case time for find?  
–  Linear 
–  But only with really bad luck or bad hash function 
–  So not worth avoiding (e.g., with balanced trees at each 

bucket) 

•  Beyond asymptotic complexity, some “data-structure 
engineering” may be warranted 
–  Linked list vs. array vs. chunked list (lists should be short!) 
–  Move-to-front 
–  Maybe leave room for 1 element (or 2?) in the table itself, to 

optimize constant factors for the common case 
•  A time-space trade-off… 
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Time vs. space (constant factors only here) 
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More rigorous chaining analysis 

Definition: The load factor, λ, of a hash table is 
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N
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λ =
← number of elements 

Under chaining, the average number of elements per bucket is ___ 
 
   
 



More rigorous chaining analysis 

Definition: The load factor, λ, of a hash table is 
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N
TableSize

λ =
← number of elements 

Under chaining, the average number of elements per bucket is λ 
 
So if some inserts are followed by random finds, then on average: 
•  Each unsuccessful find compares against ____ items 
   
 



More rigorous chaining analysis 

Definition: The load factor, λ, of a hash table is 
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N
TableSize

λ =
← number of elements 

Under chaining, the average number of elements per bucket is λ 
 
So if some inserts are followed by random finds, then on average: 
•  Each unsuccessful find compares against λ items 
•  Each successful find compares against _____ items 
   
 



More rigorous chaining analysis 

Definition: The load factor, λ, of a hash table is 
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N
TableSize

λ =
← number of elements 

Under chaining, the average number of elements per bucket is λ 
 
So if some inserts are followed by random finds, then on average: 
•  Each unsuccessful find compares against λ items 
•  Each successful find compares against λ / 2 items 

So we like to keep λ  fairly low (e.g., 1 or 1.5 or 2) for chaining 
   
 



Alternative: Use empty space in the table 

•  Another simple idea: If h(key) is already full,  
–  try (h(key) + 1) % TableSize.  If full, 
–  try (h(key) + 2) % TableSize.  If full, 
–  try (h(key) + 3) % TableSize.  If full… 

•  Example: insert 38, 19, 8, 109, 10 

Winter 2014 18 CSE373: Data Structures & Algorithms 

0 / 
1 / 
2 / 
3 / 
4 / 
5 / 
6 / 
7 / 
8 38 
9 / 



Alternative: Use empty space in the table 
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Alternative: Use empty space in the table 
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Alternative: Use empty space in the table 

Winter 2014 21 CSE373: Data Structures & Algorithms 

0 8 
1 109 
2 / 
3 / 
4 / 
5 / 
6 / 
7 / 
8 38 
9 19 

•  Another simple idea: If h(key) is already full,  
–  try (h(key) + 1) % TableSize.  If full, 
–  try (h(key) + 2) % TableSize.  If full, 
–  try (h(key) + 3) % TableSize.  If full… 

•  Example: insert 38, 19, 8, 109, 10 



Alternative: Use empty space in the table 
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•  Another simple idea: If h(key) is already full,  
–  try (h(key) + 1) % TableSize.  If full, 
–  try (h(key) + 2) % TableSize.  If full, 
–  try (h(key) + 3) % TableSize.  If full… 

•  Example: insert 38, 19, 8, 109, 10 



Probing hash tables 

Trying the next spot is called probing (also called open addressing) 
–  We just did linear probing 

• ith probe was (h(key) + i) % TableSize 
–  In general have some probe function f and use              
h(key) + f(i) % TableSize 

Open addressing does poorly with high load factor λ 
–  So want larger tables 
–  Too many probes means no more O(1) 

Winter 2014 23 CSE373: Data Structures & Algorithms 



Other operations 

insert finds an open table position using a probe function 
 
What about find? 

–  Must use same probe function to “retrace the trail” for the data 
–  Unsuccessful search when reach empty position 

What about delete? 
–  Must use “lazy” deletion.  Why? 

•  Marker indicates “no data here, but don’t stop probing” 
–  Note: delete with chaining is plain-old list-remove 
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(Primary) Clustering 

It turns out linear probing is a bad idea, even though the probe 
function is quick to compute (which is a good thing) 
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[R. Sedgewick] 

Tends to produce 
clusters, which lead to 
long probing sequences 
•  Called primary 

clustering 
•  Saw this starting in 

our example 



Analysis of Linear Probing 

•  Trivial fact: For any λ < 1, linear probing will find an empty slot 
–  It is “safe” in this sense: no infinite loop unless table is full 

•  Non-trivial facts we won’t prove: 
 Average # of probes given λ (in the limit as TableSize →∞ ) 

–  Unsuccessful search: 

–  Successful search:   

•  This is pretty bad: need to leave sufficient empty space in the 
table to get decent performance (see chart) 
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In a chart 

•  Linear-probing performance degrades rapidly as table gets full 
–  (Formula assumes “large table” but point remains) 

•  By comparison, chaining performance is linear in λ and has no 
trouble with λ>1 
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Quadratic probing 

•  We can avoid primary clustering by changing the probe function 
  (h(key) + f(i)) % TableSize 

 

•  A common technique is quadratic probing: 
  f(i) = i2 

–  So probe sequence is: 
•  0th probe:  h(key) % TableSize 
•  1st probe: (h(key) + 1) % TableSize 
•  2nd probe: (h(key) + 4) % TableSize 
•  3rd probe: (h(key) + 9) % TableSize 
•  … 
•  ith probe: (h(key) + i2) % TableSize 

•  Intuition: Probes quickly “leave the neighborhood” 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Another Quadratic Probing Example 
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TableSize = 7 
 
Insert: 
76                  (76 % 7 = 6) 
40                  (40 % 7 = 5) 
48                   (48 % 7 = 6) 
5                     (  5 % 7 = 5) 
55                   (55 % 7 = 6) 
47                   (47 % 7 = 5) 
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Another Quadratic Probing Example 
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TableSize = 7 
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Another Quadratic Probing Example 
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TableSize = 7 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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TableSize = 7 
 
Insert: 
76                  (76 % 7 = 6) 
40                  (40 % 7 = 5) 
48                   (48 % 7 = 6) 
5                     (  5 % 7 = 5) 
55                   (55 % 7 = 6) 
47                   (47 % 7 = 5) 
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Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6 
•   Excel shows takes “at least” 50 probes and a pattern 
•   Proof (like induction) using(n2+5) % 7 = ((n-7)2+5) % 7 

•   In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k 



From Bad News to Good News 

•  Bad news:  
–  Quadratic probing can cycle through the same full indices, 

never terminating despite table not being full 
 

•  Good news:  
–  If TableSize is prime and λ < ½, then quadratic probing will 

find an empty slot in at most TableSize/2 probes 
–  So: If you keep λ < ½ and TableSize is prime, no need to 

detect cycles 
 

–  Optional: Proof is posted in lecture13.txt 
•  Also, slightly less detailed proof in textbook 
•  Key fact: For prime T and 0 < i,j < T/2 where i ≠ j, 

    (k + i2) % T ≠ (k + j2) % T (i.e., no index repeat) 
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Clustering reconsidered 

•  Quadratic probing does not suffer from primary clustering:       
no problem with keys initially hashing to the same neighborhood 

•  But it’s no help if keys initially hash to the same index 
–  Called secondary clustering 

•  Can avoid secondary clustering with a probe function that 
depends on the key: double hashing… 
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Double hashing 

Idea:  
–  Given two good hash functions h and g, it is very unlikely 

that for some key,  h(key) == g(key) 
–  So make the probe function f(i) = i*g(key) 

Probe sequence: 
•  0th probe:  h(key) % TableSize 
•  1st probe:  (h(key) + g(key))   % TableSize 
•  2nd probe: (h(key) + 2*g(key)) % TableSize 
•  3rd probe: (h(key) + 3*g(key)) % TableSize 
•  … 
•  ith probe: (h(key) + i*g(key)) % TableSize 

 

Detail: Make sure g(key) cannot be 0 
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Double-hashing analysis 

•  Intuition: Because each probe is “jumping” by g(key) each 
time, we “leave the neighborhood” and “go different places from 
other initial collisions” 

•  But we could still have a problem like in quadratic probing where 
we are not “safe” (infinite loop despite room in table) 
–  It is known that this cannot happen in at least one case: 

• h(key) = key % p 
• g(key) = q – (key % q) 
• 2 < q < p 
• p and q are prime 
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More double-hashing facts 

•  Assume “uniform hashing”  
–  Means probability of g(key1) % p == g(key2) % p is 
1/p 

•  Non-trivial facts we won’t prove: 
 Average # of probes given λ (in the limit as TableSize →∞ ) 

–  Unsuccessful search (intuitive): 

–  Successful search (less intuitive): 

•  Bottom line: unsuccessful bad (but not as bad as linear probing), 
but successful is not nearly as bad 

Winter 2014 46 CSE373: Data Structures & Algorithms 

1
1 λ−

1 1log
1eλ λ
⎛ ⎞
⎜ ⎟−⎝ ⎠



Charts 
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Rehashing 
•  As with array-based stacks/queues/lists, if table gets too full, 

create a bigger table and copy everything 

•  With chaining, we get to decide what “too full” means 
–  Keep load factor reasonable (e.g., < 1)? 
–  Consider average or max size of non-empty chains? 

•  For probing, half-full is a good rule of thumb 
 
 

•  New table size 
–  Twice-as-big is a good idea, except that won’t be prime! 
–  So go about twice-as-big  
–  Can have a list of prime numbers in your code since you won’t 

grow more than 20-30 times 
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Graphs 

•  A graph is a formalism for representing relationships among items 
–  Very general definition because very general concept 

•  A graph is a pair 
 G = (V,E) 

–  A set of vertices, also known as nodes   
 V = {v1,v2,…,vn} 

–  A set of edges  
 E = {e1,e2,…,em} 

•  Each edge ei is a pair of vertices  
 (vj,vk) 

•  An edge “connects” the vertices 

•  Graphs can be directed or undirected 
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Han 

Leia 

Luke 

V = {Han,Leia,Luke} 
E = {(Luke,Leia),  
     (Han,Leia),  
     (Leia,Han)} 



An ADT? 

•  Can think of graphs as an ADT with operations like 
isEdge((vj,vk)) 

•  But it is unclear what the “standard operations” are 

•  Instead we tend to develop algorithms over graphs and then use 
data structures that are efficient for those algorithms 

•  Many important problems can be solved by: 
1.  Formulating them in terms of graphs 
2.  Applying a standard graph algorithm 

•  To make the formulation easy and standard, we have a lot of 
standard terminology about graphs 
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Some Graphs 

For each, what are the vertices and what are the edges? 
 

•  Web pages with links 
•  Facebook friends 
•  “Input data” for the Kevin Bacon game 
•  Methods in a program that call each other 
•  Road maps (e.g., Google maps) 
•  Airline routes 
•  Family trees 
•  Course pre-requisites 
•  … 

Using the same algorithms for problems across so many domains 
sounds like “core computer science and engineering” 
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Undirected Graphs 

•  In undirected graphs, edges have no specific direction 
–  Edges are always “two-way” 

Winter 2014 52 CSE373: Data Structures & Algorithms 

•  Thus, (u,v) ∈ E  implies (v,u) ∈ E   
–  Only one of these edges needs to be in the set 
–  The other is implicit, so normalize how you check for it 

•  Degree of a vertex: number of edges containing that vertex 
–  Put another way: the number of adjacent vertices 

A 

B 

C 

D 



Directed Graphs 

•  In directed graphs (sometimes called digraphs), edges have a 
direction 
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•  Thus, (u,v) ∈ E does not imply (v,u) ∈ E.   
•  Let (u,v) ∈ E mean u → v  
•  Call u the source and v the destination 

•  In-degree of a vertex: number of in-bound edges, 
i.e., edges where the vertex is the destination 

•  Out-degree of a vertex: number of out-bound edges 
i.e., edges where the vertex is the source 

or 

2 edges here 

A 

B 

C 

D A 

B 

C 



Self-Edges, Connectedness 

 

•  A self-edge a.k.a. a loop is an edge of the form (u,u) 
–  Depending on the use/algorithm, a graph may have: 

•  No self edges 
•  Some self edges 
•  All self edges (often therefore implicit, but we will be explicit) 

•  A node can have a degree / in-degree / out-degree of zero 

•  A graph does not have to be connected 
–  Even if every node has non-zero degree 
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More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum? 
–  Maximum for undirected? 
–  Maximum for directed? 
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A 

B 

C 

V = {A, B, C, D} 
E = {(C, B),  
     (A, B),  
     (B, A) 
     (C, D)} 

D 



More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? 
–  Maximum for directed? 
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A 

B 

C 

V = {A, B, C, D} 
E = {(C, B),  
     (A, B),  
     (B, A) 
     (C, D)} 

D 



More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 
–  Maximum for directed? 
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A 

B 

C 

D 



More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 
–  Maximum for directed?     |V|2 ∈ O(|V|2) 

   (assuming self-edges allowed, else subtract |V|) 
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A 

B 

C 

D 



More notation 

For a graph G = (V,E): 
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 

–  Maximum for directed?     |V|2 ∈ O(|V|2) 
   (assuming self-edges allowed, else subtract |V|) 

•  If (u,v) ∈ E  
–  Then v is a neighbor of u, i.e., v is adjacent to u 
–  Order matters for directed edges 

• u is not adjacent to v unless (v,u) ∈ E 
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A 

B 

C 

D 


