
CSE373: Data Structures & Algorithms

Lecture 13: Hash Collisions

Aaron Bauer
Winter 2014

Announcements

•  Homework 3 due at 11 p.m. (or later with late days)
•  Homework 4 has been posted (due Feb. 20)

–  Can be done with a partner
–  Partner selection due Feb. 12
–  Partner form linked from homework

Winter 2014 2 CSE373: Data Structures & Algorithms

Hash Tables: Review

•  Aim for constant-time (i.e., O(1)) find, insert, and delete
–  “On average” under some reasonable assumptions

•  A hash table is an array of some fixed size
–  But growable as we’ll see

Winter 2014 3 CSE373: Data Structures & Algorithms

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

One expert suggestion

•  int result = 17;
•  foreach field f

–  int fieldHashcode =
•  boolean: (f ? 1: 0)
•  byte, char, short, int: (int) f
•  long: (int) (f ^ (f >>> 32))
•  float: Float.floatToIntBits(f)
•  double: Double.doubleToLongBits(f), then above
•  Object: object.hashCode()

–  result = 31 * result + fieldHashcode

Winter 2014 CSE373: Data Structures & Algorithms 4

Collision resolution

Collision:
 When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

–  Ideas?

Winter 2014 5 CSE373: Data Structures & Algorithms

Separate Chaining
Chaining:

All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

Winter 2014 6 CSE373: Data Structures & Algorithms

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

Separate Chaining

Winter 2014 7 CSE373: Data Structures & Algorithms

0
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

10 / Chaining:
 All keys that map to the same

 table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
 insert 10, 22, 107, 12, 42
 with mod hashing
 and TableSize = 10

Separate Chaining

Winter 2014 8 CSE373: Data Structures & Algorithms

0
1 /
2
3 /
4 /
5 /
6 /
7 /
8 /
9 /

10 /

22 /

Chaining:
 All keys that map to the same

 table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
 insert 10, 22, 107, 12, 42
 with mod hashing
 and TableSize = 10

Separate Chaining

Winter 2014 9 CSE373: Data Structures & Algorithms

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

22 /

107 /

Chaining:
 All keys that map to the same

 table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
 insert 10, 22, 107, 12, 42
 with mod hashing
 and TableSize = 10

Separate Chaining

Winter 2014 10 CSE373: Data Structures & Algorithms

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

12

107 /

22 /

Chaining:
 All keys that map to the same

 table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
 insert 10, 22, 107, 12, 42
 with mod hashing
 and TableSize = 10

Separate Chaining

Winter 2014 11 CSE373: Data Structures & Algorithms

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

Chaining:
 All keys that map to the same

 table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
 insert 10, 22, 107, 12, 42
 with mod hashing
 and TableSize = 10

Thoughts on chaining

•  Worst-case time for find?
–  Linear
–  But only with really bad luck or bad hash function
–  So not worth avoiding (e.g., with balanced trees at each

bucket)

•  Beyond asymptotic complexity, some “data-structure
engineering” may be warranted
–  Linked list vs. array vs. chunked list (lists should be short!)
–  Move-to-front
–  Maybe leave room for 1 element (or 2?) in the table itself, to

optimize constant factors for the common case
•  A time-space trade-off…

Winter 2014 12 CSE373: Data Structures & Algorithms

Time vs. space (constant factors only here)

Winter 2014 13 CSE373: Data Structures & Algorithms

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

0 10 /
1 / X
2 42
3 / X
4 / X
5 / X
6 / X
7 107 /
8 / X
9 / X

12 22 /

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Winter 2014 14 CSE373: Data Structures & Algorithms

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is ___

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Winter 2014 15 CSE373: Data Structures & Algorithms

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
•  Each unsuccessful find compares against ____ items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Winter 2014 16 CSE373: Data Structures & Algorithms

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
•  Each unsuccessful find compares against λ items
•  Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Winter 2014 17 CSE373: Data Structures & Algorithms

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
•  Each unsuccessful find compares against λ items
•  Each successful find compares against λ / 2 items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: Use empty space in the table

•  Another simple idea: If h(key) is already full,
–  try (h(key) + 1) % TableSize. If full,
–  try (h(key) + 2) % TableSize. If full,
–  try (h(key) + 3) % TableSize. If full…

•  Example: insert 38, 19, 8, 109, 10

Winter 2014 18 CSE373: Data Structures & Algorithms

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 /

Alternative: Use empty space in the table

Winter 2014 19 CSE373: Data Structures & Algorithms

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

•  Another simple idea: If h(key) is already full,
–  try (h(key) + 1) % TableSize. If full,
–  try (h(key) + 2) % TableSize. If full,
–  try (h(key) + 3) % TableSize. If full…

•  Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Winter 2014 20 CSE373: Data Structures & Algorithms

0 8
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

•  Another simple idea: If h(key) is already full,
–  try (h(key) + 1) % TableSize. If full,
–  try (h(key) + 2) % TableSize. If full,
–  try (h(key) + 3) % TableSize. If full…

•  Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Winter 2014 21 CSE373: Data Structures & Algorithms

0 8
1 109
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

•  Another simple idea: If h(key) is already full,
–  try (h(key) + 1) % TableSize. If full,
–  try (h(key) + 2) % TableSize. If full,
–  try (h(key) + 3) % TableSize. If full…

•  Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Winter 2014 22 CSE373: Data Structures & Algorithms

0 8
1 109
2 10
3 /
4 /
5 /
6 /
7 /
8 38
9 19

•  Another simple idea: If h(key) is already full,
–  try (h(key) + 1) % TableSize. If full,
–  try (h(key) + 2) % TableSize. If full,
–  try (h(key) + 3) % TableSize. If full…

•  Example: insert 38, 19, 8, 109, 10

Probing hash tables

Trying the next spot is called probing (also called open addressing)
–  We just did linear probing

• ith probe was (h(key) + i) % TableSize
–  In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ
–  So want larger tables
–  Too many probes means no more O(1)

Winter 2014 23 CSE373: Data Structures & Algorithms

Other operations

insert finds an open table position using a probe function

What about find?

–  Must use same probe function to “retrace the trail” for the data
–  Unsuccessful search when reach empty position

What about delete?
–  Must use “lazy” deletion. Why?

•  Marker indicates “no data here, but don’t stop probing”
–  Note: delete with chaining is plain-old list-remove

Winter 2014 24 CSE373: Data Structures & Algorithms

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

Winter 2014 25 CSE373: Data Structures & Algorithms

[R. Sedgewick]

Tends to produce
clusters, which lead to
long probing sequences
•  Called primary

clustering
•  Saw this starting in

our example

Analysis of Linear Probing

•  Trivial fact: For any λ < 1, linear probing will find an empty slot
–  It is “safe” in this sense: no infinite loop unless table is full

•  Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as TableSize →∞)

–  Unsuccessful search:

–  Successful search:

•  This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Winter 2014 26 CSE373: Data Structures & Algorithms

() ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

In a chart

•  Linear-probing performance degrades rapidly as table gets full
–  (Formula assumes “large table” but point remains)

•  By comparison, chaining performance is linear in λ and has no
trouble with λ>1

Winter 2014 27 CSE373: Data Structures & Algorithms

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.
01

0.

09

0.
17

0.

25

0.
33

0.

41

0.
49

0.

57

0.
65

0.

73

0.
81

0.

89

0.
97

 Av
er

ag
e

of

 P
ro

be
s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0.
01

0.

07

0.
13

0.

19

0.
25

0.

31

0.
37

0.

43

0.
49

0.

55

0.
61

0.

67

0.
73

0.

79
 Av

er
ag

e

of
 P

ro
be

s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

Quadratic probing

•  We can avoid primary clustering by changing the probe function
 (h(key) + f(i)) % TableSize

•  A common technique is quadratic probing:
 f(i) = i2

–  So probe sequence is:
•  0th probe: h(key) % TableSize
•  1st probe: (h(key) + 1) % TableSize
•  2nd probe: (h(key) + 4) % TableSize
•  3rd probe: (h(key) + 9) % TableSize
•  …
•  ith probe: (h(key) + i2) % TableSize

•  Intuition: Probes quickly “leave the neighborhood”
Winter 2014 28 CSE373: Data Structures & Algorithms

Quadratic Probing Example

Winter 2014 29 CSE373: Data Structures & Algorithms

0
1
2
3
4
5
6
7
8
9

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Winter 2014 30 CSE373: Data Structures & Algorithms

0
1
2
3
4
5
6
7
8
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Winter 2014 31 CSE373: Data Structures & Algorithms

0
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Winter 2014 32 CSE373: Data Structures & Algorithms

0 49
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Winter 2014 33 CSE373: Data Structures & Algorithms

0 49
1
2 58
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Winter 2014 34 CSE373: Data Structures & Algorithms

0 49
1
2 58
3 79
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Another Quadratic Probing Example

Winter 2014 35 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5
6

Another Quadratic Probing Example

Winter 2014 36 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5
6 76

Another Quadratic Probing Example

Winter 2014 37 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5 40
6 76

Another Quadratic Probing Example

Winter 2014 38 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2
3
4
5 40
6 76

Another Quadratic Probing Example

Winter 2014 39 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3
4
5 40
6 76

Another Quadratic Probing Example

Winter 2014 40 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Another Quadratic Probing Example

Winter 2014 41 CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76  (76 % 7 = 6)
40  (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
•  Excel shows takes “at least” 50 probes and a pattern
•  Proof (like induction) using(n2+5) % 7 = ((n-7)2+5) % 7

•  In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From Bad News to Good News

•  Bad news:
–  Quadratic probing can cycle through the same full indices,

never terminating despite table not being full

•  Good news:
–  If TableSize is prime and λ < ½, then quadratic probing will

find an empty slot in at most TableSize/2 probes
–  So: If you keep λ < ½ and TableSize is prime, no need to

detect cycles

–  Optional: Proof is posted in lecture13.txt
•  Also, slightly less detailed proof in textbook
•  Key fact: For prime T and 0 < i,j < T/2 where i ≠ j,

 (k + i2) % T ≠ (k + j2) % T (i.e., no index repeat)

Winter 2014 42 CSE373: Data Structures & Algorithms

Clustering reconsidered

•  Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

•  But it’s no help if keys initially hash to the same index
–  Called secondary clustering

•  Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

Winter 2014 43 CSE373: Data Structures & Algorithms

Double hashing

Idea:
–  Given two good hash functions h and g, it is very unlikely

that for some key, h(key) == g(key)
–  So make the probe function f(i) = i*g(key)

Probe sequence:
•  0th probe: h(key) % TableSize
•  1st probe: (h(key) + g(key)) % TableSize
•  2nd probe: (h(key) + 2*g(key)) % TableSize
•  3rd probe: (h(key) + 3*g(key)) % TableSize
•  …
•  ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Winter 2014 44 CSE373: Data Structures & Algorithms

Double-hashing analysis

•  Intuition: Because each probe is “jumping” by g(key) each
time, we “leave the neighborhood” and “go different places from
other initial collisions”

•  But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)
–  It is known that this cannot happen in at least one case:

• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and q are prime

Winter 2014 45 CSE373: Data Structures & Algorithms

More double-hashing facts

•  Assume “uniform hashing”
–  Means probability of g(key1) % p == g(key2) % p is
1/p

•  Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as TableSize →∞)

–  Unsuccessful search (intuitive):

–  Successful search (less intuitive):

•  Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

Winter 2014 46 CSE373: Data Structures & Algorithms

1
1 λ−

1 1log
1eλ λ
⎛ ⎞
⎜ ⎟−⎝ ⎠

Charts

Winter 2014 47 CSE373: Data Structures & Algorithms

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.
01

0.

09

0.
17

0.

25

0.
33

0.

41

0.
49

0.

57

0.
65

0.

73

0.
81

0.

89

0.
97

 Av
er

ag
e

of

 P
ro

be
s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0.
01

0.

07

0.
13

0.

19

0.
25

0.

31

0.
37

0.

43

0.
49

0.

55

0.
61

0.

67

0.
73

0.

79
 Av

er
ag

e

of
 P

ro
be

s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.
01

0.

09

0.
17

0.

25

0.
33

0.

41

0.
49

0.

57

0.
65

0.

73

0.
81

0.

89

0.
97

Av
er

ag
e

of

 P
ro

be
s

Load Factor

Uniform Hashing

uniform hashing
not found

uniform hashing
found

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

0.
01

0.

07

0.
13

0.

19

0.
25

0.

31

0.
37

0.

43

0.
49

0.

55

0.
61

0.

67

0.
73

Av
er

ag
e

of

 P
ro

be
s

Load Factor

Uniform Hashing

uniform hashing
not found

uniform hashing
found

Rehashing
•  As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything

•  With chaining, we get to decide what “too full” means
–  Keep load factor reasonable (e.g., < 1)?
–  Consider average or max size of non-empty chains?

•  For probing, half-full is a good rule of thumb

•  New table size
–  Twice-as-big is a good idea, except that won’t be prime!
–  So go about twice-as-big
–  Can have a list of prime numbers in your code since you won’t

grow more than 20-30 times

Winter 2014 48 CSE373: Data Structures & Algorithms

Graphs

•  A graph is a formalism for representing relationships among items
–  Very general definition because very general concept

•  A graph is a pair
 G = (V,E)

–  A set of vertices, also known as nodes
 V = {v1,v2,…,vn}

–  A set of edges
 E = {e1,e2,…,em}

•  Each edge ei is a pair of vertices
 (vj,vk)

•  An edge “connects” the vertices

•  Graphs can be directed or undirected

Winter 2014 49 CSE373: Data Structures & Algorithms

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

An ADT?

•  Can think of graphs as an ADT with operations like
isEdge((vj,vk))

•  But it is unclear what the “standard operations” are

•  Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms

•  Many important problems can be solved by:
1.  Formulating them in terms of graphs
2.  Applying a standard graph algorithm

•  To make the formulation easy and standard, we have a lot of
standard terminology about graphs

Winter 2014 50 CSE373: Data Structures & Algorithms

Some Graphs

For each, what are the vertices and what are the edges?

•  Web pages with links
•  Facebook friends
•  “Input data” for the Kevin Bacon game
•  Methods in a program that call each other
•  Road maps (e.g., Google maps)
•  Airline routes
•  Family trees
•  Course pre-requisites
•  …

Using the same algorithms for problems across so many domains
sounds like “core computer science and engineering”

Winter 2014 51 CSE373: Data Structures & Algorithms

Undirected Graphs

•  In undirected graphs, edges have no specific direction
–  Edges are always “two-way”

Winter 2014 52 CSE373: Data Structures & Algorithms

•  Thus, (u,v) ∈ E implies (v,u) ∈ E
–  Only one of these edges needs to be in the set
–  The other is implicit, so normalize how you check for it

•  Degree of a vertex: number of edges containing that vertex
–  Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

•  In directed graphs (sometimes called digraphs), edges have a
direction

Winter 2014 53 CSE373: Data Structures & Algorithms

•  Thus, (u,v) ∈ E does not imply (v,u) ∈ E.
•  Let (u,v) ∈ E mean u → v
•  Call u the source and v the destination

•  In-degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

•  Out-degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges here

A

B

C

D A

B

C

Self-Edges, Connectedness

•  A self-edge a.k.a. a loop is an edge of the form (u,u)
–  Depending on the use/algorithm, a graph may have:

•  No self edges
•  Some self edges
•  All self edges (often therefore implicit, but we will be explicit)

•  A node can have a degree / in-degree / out-degree of zero

•  A graph does not have to be connected
–  Even if every node has non-zero degree

Winter 2014 54 CSE373: Data Structures & Algorithms

More notation

For a graph G = (V,E)

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum?
–  Maximum for undirected?
–  Maximum for directed?

Winter 2014 55 CSE373: Data Structures & Algorithms

A

B

C

V = {A, B, C, D}
E = {(C, B),
 (A, B),
 (B, A)
 (C, D)}

D

More notation

For a graph G = (V,E)

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum? 0
–  Maximum for undirected?
–  Maximum for directed?

Winter 2014 56 CSE373: Data Structures & Algorithms

A

B

C

V = {A, B, C, D}
E = {(C, B),
 (A, B),
 (B, A)
 (C, D)}

D

More notation

For a graph G = (V,E)

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum? 0
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2)
–  Maximum for directed?

Winter 2014 57 CSE373: Data Structures & Algorithms

A

B

C

D

More notation

For a graph G = (V,E)

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum? 0
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2)
–  Maximum for directed? |V|2 ∈ O(|V|2)

 (assuming self-edges allowed, else subtract |V|)

Winter 2014 58 CSE373: Data Structures & Algorithms

A

B

C

D

More notation

For a graph G = (V,E):

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum? 0
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2)

–  Maximum for directed? |V|2 ∈ O(|V|2)
 (assuming self-edges allowed, else subtract |V|)

•  If (u,v) ∈ E
–  Then v is a neighbor of u, i.e., v is adjacent to u
–  Order matters for directed edges

• u is not adjacent to v unless (v,u) ∈ E
Winter 2014 59 CSE373: Data Structures & Algorithms

A

B

C

D

