

CSE373: Data Structures & Algorithms Lecture 13: Hash Collisions

Aaron Bauer Winter 2014

Announcements

- Homework 3 due at 11 p.m. (or later with late days)
- Homework 4 has been posted (due Feb. 20)
 - Can be done with a partner
 - Partner selection due Feb. 12
 - Partner form linked from homework

Hash Tables: Review

Aim for constant-time (i.e., O(1)) find, insert, and delete
 "On average" under some reasonable assumptions

One expert suggestion

- int result = 17;
- foreach field f
 - int fieldHashcode =
 - boolean: (f? 1: 0)
 - byte, char, short, int: (int) f
 - long: (int) (f ^ (f >>> 32))
 - float: Float.floatToIntBits(f)
 - double: Double.doubleToLongBits(f), then above
 - Object: object.hashCode()
 - result = 31 * result + fieldHashcode

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

- Ideas?

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Thoughts on chaining

- Worst-case time for **find**?
 - Linear
 - But only with really bad luck or bad hash function
 - So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
 - Linked list vs. array vs. chunked list (lists should be short!)
 - Move-to-front
 - Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 - A time-space trade-off...

Time vs. space (constant factors only here)

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$$

Under chaining, the average number of elements per bucket is _____

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$$

Under chaining, the average number of elements per bucket is $\boldsymbol{\lambda}$

So if some inserts are followed by *random* finds, then on average:

• Each unsuccessful **find** compares against _____ items

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$$

Under chaining, the average number of elements per bucket is $\boldsymbol{\lambda}$

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against λ items
- Each successful **find** compares against _____ items

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful **find** compares against λ items
- Each successful **find** compares against $\lambda/2$ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

Winter 2014

CSE373: Data Structures & Algorithms

• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

• Another simple idea: If h (key) is already full,

- try (h(key) + 1) % TableSize. If full,

- try (h(key) + 2) % TableSize. If full,

- try (h(key) + 3) % TableSize. If full...

Probing hash tables

Trying the next spot is called probing (also called open addressing)

- We just did linear probing
 - ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Other operations

insert finds an open table position using a probe function

What about **find**?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about **delete**?

- *Must* use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce *clusters*, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

Analysis of Linear Probing

- Trivial fact: For any λ < 1, linear probing will find an empty slot
 It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:
 Average # of probes given λ (in the limit as TableSize →∞)

- Unsuccessful search:
$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$$

- Successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

Winter 2014

CSE373: Data Structures & Algorithms

In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)

By comparison, chaining performance is linear in λ and has no trouble with λ>1

Winter 2014

CSE373: Data Structures & Algorithms

Quadratic probing

- We can avoid primary clustering by changing the probe function (h(key) + f(i)) % TableSize
- A common technique is quadratic probing:

 $f(i) = i^2$

- So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

TableSize = 7

Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5 % 7 = 5)
(55 % 7 = 6)
(47 % 7 = 5)

Winter 2014

TableSize = 7

Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5 % 7 = 5)
(55 % 7 = 6)
(47 % 7 = 5)

TableSize = 7

Insert:

76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7 = 5)
(55 % 7 = 6)
(47 % 7 = 5)

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

- Excel shows takes "at least" 50 probes and a pattern
- Proof (like induction) using $(n^2+5) \ \% \ 7 = ((n-7)^2+5) \ \% \ 7$
 - In fact, for all c and k, (n^2+c) % k = $((n-k)^2+c)$ % k

Winter 2014

CSE373: Data Structures & Algorithms

From Bad News to Good News

- Bad news:
 - Quadratic probing can cycle through the same full indices, never terminating despite table not being full
- Good news:
 - If TableSize is prime and λ < ½, then quadratic probing will find an empty slot in at most TableSize/2 probes
 - So: If you keep λ < ½ and TableSize is prime, no need to detect cycles
 - Optional: Proof is posted in lecture13.txt
 - Also, slightly less detailed proof in textbook
 - Key fact: For prime T and 0 < i, j < T/2 where i ≠ j,
 (k + i²) % T ≠ (k + j²) % T (i.e., no index repeat)

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood
- But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

- Oth probe: h(key) % TableSize
- 1st probe: (h(key) + g(key)) % TableSize
- 2nd probe: (h(key) + 2*g(key)) % TableSize
- 3rd probe: (h(key) + 3*g(key)) % TableSize
- ...
- ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Winter 2014

Double-hashing analysis

- Intuition: Because each probe is "jumping" by g(key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - **p** and **q** are prime

More double-hashing facts

- Assume "uniform hashing"
 - Means probability of g(key1) % p == g(key2) % p is 1/p
- Non-trivial facts we won't prove:
 Average # of probes given λ (in the limit as TableSize →∞)

Unsuccessful search (intuitive): 1

$$\overline{1-\lambda}$$

– Successful search (less intuitive):

$$\frac{1}{\lambda} \log_e \left(\frac{1}{1 - \lambda} \right)$$

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

Charts

Uniform Hashing

Uniform Hashing

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For probing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except that won't be prime!
 - So go *about* twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

Graphs

- A graph is a formalism for representing relationships among items
 Very general definition because very general concept
- A graph is a pair

G = (V, E)

A set of vertices, also known as nodes

$$\mathbf{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

- A set of edges
 - $E = \{e_1, e_2, ..., e_m\}$
 - Each edge e_i is a pair of vertices
 (v_j, v_k)
 - An edge "connects" the vertices
- Graphs can be directed or undirected

Han Luke

V = {Han,Leia,Luke}

$$E = \{ (Luke, Leia), \}$$

(Han,Leia),

(Leia, Han) }

An ADT?

- Can think of graphs as an ADT with operations like $isEdge((v_j, v_k))$
- But it is unclear what the "standard operations" are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 - 1. Formulating them in terms of graphs
 - 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs

Winter 2014

Some Graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Using the same algorithms for problems across so many domains sounds like "core computer science and engineering"

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- Thus, $(u,v) \in E$ implies $(v,u) \in E$
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Winter 2014

CSE373: Data Structures & Algorithms

Directed Graphs

In directed graphs (sometimes called digraphs), edges have a direction

or

- Thus, $(u, v) \in E$ does not imply $(v, u) \in E$.
 - Let $(u, v) \in E$ mean $u \rightarrow v$
 - Call **u** the source and **v** the destination
- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree

For a graph G = (V, E)

- $|\mathbf{v}|$ is the number of vertices
- **|E|** is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

For a graph G = (V, E)

- $|\mathbf{v}|$ is the number of vertices
- **|E|** is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

 $V = \{A, B, C, D\}$ $E = \{(C, B), (A, B), (B, A), (B, A), (C, D)\}$

0

For a graph G = (V, E)

- $|\mathbf{v}|$ is the number of vertices
- **|E|** is the number of edges
 - Minimum?

- 0
- Maximum for undirected? $|v| |v+1|/2 \in O(|v|^2)$
- Maximum for directed?

For a graph G = (V, E)

- |V| is the number of vertices
- **|E|** is the number of edges
 - Minimum?

- 0
- Maximum for undirected? $|v| |v+1|/2 \in O(|v|^2)$
- Maximum for directed? $|\mathbf{V}|^2 \in O(|\mathbf{V}|^2)$

(assuming self-edges allowed, else subtract |**v**|)

For a graph G = (V, E):

- **|V|** is the number of vertices
- **|E|** is the number of edges
 - Minimum?

- Maximum for undirected? $|V| |V+1|/2 \in O(|V|^2)$

0

- Maximum for directed? $|\mathbf{v}|^2 \in O(|\mathbf{v}|^2)$ (assuming self-edges allowed, else subtract $|\mathbf{v}|$)
- If $(u,v) \in E$
 - Then \mathbf{v} is a neighbor of \mathbf{u} , i.e., \mathbf{v} is adjacent to \mathbf{u}
 - Order matters for directed edges
 - ${\tt u}$ is not adjacent to ${\tt v}$ unless (${\tt v}, {\tt u}) \, \in \, {\tt E}$

Winter 2014

CSE373: Data Structures & Algorithms