CSE332: Data Structures \& Algorithms Lecture 14: Introduction to Graphs

Aaron Bauer
Winter 2014

Announcements

- Reminder: HW4 partner selection due on Wednesday
- Extra office hours Tuesday, 4:30-5:30 in Bagley 154
- TA session Thursday, 4:30-5:30 in Bagley 154
- Union-find and homework 4

Graphs

- A graph is a formalism for representing relationships among items
- Very general definition because very general concept
- A graph is a pair
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- A set of vertices, also known as nodes

$$
\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}
$$

- A set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Each edge $\mathbf{e}_{\mathbf{i}}$ is a pair of vertices $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$
- An edge "connects" the vertices
- Graphs can be directed or undirected

Undirected Graphs

- In undirected graphs, edges have no specific direction
- Edges are always "two-way"

- Thus, $(\mathbf{u}, \mathrm{v}) \in \mathrm{E}$ implies $(\mathrm{v}, \mathrm{u}) \in \mathrm{E}$
- Only one of these edges needs to be in the set
- The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
- Put another way: the number of adjacent vertices

Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction

or

- Thus, (u,v) $\in \mathbf{E}$ does not imply $(v, u) \in E$.
- Let (u,v) $\in E$ mean $u \rightarrow v$
- Call u the source and v the destination
- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
- Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges
- All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
- Even if every node has non-zero degree

More notation

For a graph G $=(\mathbf{V}, \mathbf{E})$

- $|\mathrm{V}|$ is the number of vertices
- $|E|$ is the number of edges
- Minimum?
- Maximum for undirected?
- Maximum for directed?

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} \\
\mathrm{E}= & \{(\mathrm{C}, \mathrm{~B}), \\
& (\mathrm{A}, \mathrm{~B}), \\
& (\mathrm{B}, \mathrm{~A}) \\
& (\mathrm{C}, \mathrm{D})\}
\end{aligned}
$$

More notation

For a graph $G=(\mathbf{V}, E)$

- $|\mathrm{V}|$ is the number of vertices
- $|E|$ is the number of edges
- Minimum?

0

- Maximum for undirected?
- Maximum for directed?

More notation

For a graph $G=(\mathbf{V}, \mathbf{E})$

- $|\mathrm{V}|$ is the number of vertices
- $|E|$ is the number of edges
- Minimum? 0
- Maximum for undirected? |V||V+1|/2 $\in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Maximum for directed?

More notation

For a graph $G=(\mathbf{V}, E)$

- $|\mathrm{V}|$ is the number of vertices
- $|E|$ is the number of edges
- Minimum? 0
- Maximum for undirected? |V||V+1|/2 $\in O\left(|\mathrm{~V}|^{2}\right)$
- Maximum for directed? $|\mathrm{V}|^{2} \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
(assuming self-edges allowed, else subtract $|\mathrm{V}|$)

More notation

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:

- $|\mathrm{V}|$ is the number of vertices
- $|E|$ is the number of edges
- Minimum? 0
- Maximum for undirected? |V||V+1|/2 $\in O\left(|\mathrm{~V}|^{2}\right)$
- Maximum for directed? $|\mathrm{V}|^{2} \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
(assuming self-edges allowed, else subtract $|\mathrm{V}|$)
- If (u,v) $\in E$
- Then v is a neighbor of u, i.e., v is adjacent to u
- Order matters for directed edges
$\cdot \mathbf{u}$ is not adjacent to \mathbf{v} unless (\mathbf{v}, u) $\in \mathbf{E}$

Examples again

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. "Input data" for the Kevin Bacon game
4. Methods in a program that call each other
5. Road maps (e.g., Google maps)
6. Airline routes
7. Family trees
8. Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples use ints)
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$ such that $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right) \in$ E for all $0 \leq \mathrm{i}<\mathrm{n}$. Say "a path from v_{o} to v_{n} "
- A cycle is a path that begins and ends at the same node $\left(v_{0}==v_{n}\right)$

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example where
$P=[$ Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins [Seattle, Salt Lake City, San Francisco, Dallas, Seattle] [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D ?

Does the graph contain any cycles?

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D ? No

Does the graph contain any cycles?

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D ? No

Does the graph contain any cycles? No

Undirected-Graph Connectivity

- An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

Connected graph

Disconnected graph

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v
plus self edges

Directed-Graph Connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Example:

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
- The tree is just drawn differently and with undirected edges

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
- The tree is just drawn differently and with undirected edges

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
- Every rooted directed tree is a DAG
- But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

- Recall: In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$
- Recall: In a directed graph: $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$
- So for any graph, $O\left(|\mathrm{E}|+|\mathrm{V}|^{2}\right)$ is $O\left(|\mathrm{~V}|^{2}\right)$
- Another fact: If an undirected graph is connected, then $|\mathrm{V}|-1 \leq|\mathrm{E}|$
- Because $|\mathrm{E}|$ is often much smaller than its maximum size, we do not always approximate $|\mathrm{E}|$ as $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|\mathrm{E}|$ is $\Theta\left(|\mathrm{V}|^{2}\right)$ we say the graph is dense
- More sloppily, dense means "lots of edges"
- If $|\mathrm{E}|$ is $\mathrm{O}(|\mathrm{V}|)$ we say the graph is sparse
- More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
- For example, "what's the lowest-cost path from x to y "
- But we need a data structure that represents graphs
- The "best one" can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- A $|\mathrm{V}| \times|\mathrm{V}|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
- If M is the matrix, then $\mathrm{M}[\mathrm{u}][\mathrm{v}$] being true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:
- Space requirements:

- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

	$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$			
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge:
- Delete an edge:

	$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$			
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: O(1)
- Delete an edge:

S	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: O(1)
- Delete an edge: $O(1)$

S	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$			
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: O(1)
- Delete an edge: O(1)

S	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- $|\mathrm{V}|^{2}$ bits
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: O(1)
- Delete an edge: O(1)

S	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- $|\mathrm{V}|^{2}$ bits
- Best for sparse or dense graphs?
- Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- How can we adapt the representation for weighted graphs?

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?

	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
- Instead of a Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- In some situations, 0 or -1 works

	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length $|\mathrm{V}|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
- Get all of a vertex's in-edges:

- Decide if some edge exists:
- Insert an edge:
- Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges: $O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

- Decide if some edge exists:
- Insert an edge:
- Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
- Insert an edge:
- Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge:
- Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge: O(1) (unless you need to check if it's there)
- Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge: $O(1)$ (unless you need to check if it's there)
- Delete an edge: $O(d)$ where d is out-degree of source
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge: $O(1)$ (unless you need to check if it's there)
- Delete an edge: $O(d)$ where d is out-degree of source
- Space requirements:
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Best for dense or sparse graphs?

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge: $O(1)$ (unless you need to check if it's there)
- Delete an edge: $O(d)$ where d is out-degree of source
- Space requirements:
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Best for dense or sparse graphs?
- Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices \& adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly $2 x$ space
- But may slow down operations in languages with "proper" 2D arrays (not Java, which has only arrays of arrays)
- How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

Next...

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
- Related: Determine if there even is such a path

Topological Sort

Disclaimer: Do not use for official advising purposes !

Problem: Given a DAG G=(V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output: $126,142,143,374,373,417,410,413, \mathrm{XYZ}, 415$

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- Graph with 5 topological orders:
- Do some DAGs have exactly 1 answer?
- Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output \mathbf{v} and conceptually remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that ($\mathbf{v}, \mathbf{u})$ in \mathbf{E}), decrement the in-degree of \mathbf{u}
