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Announcements 

•  Reminder: HW4 partner selection due on Wednesday 
•  Extra office hours Tuesday, 4:30-5:30 in Bagley 154 
•  TA session Thursday, 4:30-5:30 in Bagley 154 

–  Union-find and homework 4 
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Graphs 

•  A graph is a formalism for representing relationships among items 
–  Very general definition because very general concept 

•  A graph is a pair 
 G = (V,E) 

–  A set of vertices, also known as nodes   
 V = {v1,v2,…,vn} 

–  A set of edges  
 E = {e1,e2,…,em} 

•  Each edge ei is a pair of vertices  
 (vj,vk) 

•  An edge “connects” the vertices 

•  Graphs can be directed or undirected 
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Undirected Graphs 

•  In undirected graphs, edges have no specific direction 
–  Edges are always “two-way” 
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•  Thus, (u,v) ∈ E  implies (v,u) ∈ E   
–  Only one of these edges needs to be in the set 
–  The other is implicit, so normalize how you check for it 

•  Degree of a vertex: number of edges containing that vertex 
–  Put another way: the number of adjacent vertices 
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Directed Graphs 

•  In directed graphs (sometimes called digraphs), edges have a 
direction 
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•  Thus, (u,v) ∈ E does not imply (v,u) ∈ E.   
•  Let (u,v) ∈ E mean u → v  
•  Call u the source and v the destination 

•  In-degree of a vertex: number of in-bound edges, 
i.e., edges where the vertex is the destination 

•  Out-degree of a vertex: number of out-bound edges 
i.e., edges where the vertex is the source 

or 

2 edges here 
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Self-Edges, Connectedness 

 

•  A self-edge a.k.a. a loop is an edge of the form (u,u) 
–  Depending on the use/algorithm, a graph may have: 

•  No self edges 
•  Some self edges 
•  All self edges (often therefore implicit, but we will be explicit) 

•  A node can have a degree / in-degree / out-degree of zero 

•  A graph does not have to be connected 
–  Even if every node has non-zero degree 
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More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum? 
–  Maximum for undirected? 
–  Maximum for directed? 
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More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? 
–  Maximum for directed? 
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More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 
–  Maximum for directed? 
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More notation 

For a graph G = (V,E)  
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 
–  Maximum for directed?     |V|2 ∈ O(|V|2) 

   (assuming self-edges allowed, else subtract |V|) 
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More notation 

For a graph G = (V,E): 
 
•  |V| is the number of vertices 
•  |E| is the number of edges 

–  Minimum?                           0 
–  Maximum for undirected? |V||V+1|/2 ∈ O(|V|2) 

–  Maximum for directed?     |V|2 ∈ O(|V|2) 
   (assuming self-edges allowed, else subtract |V|) 

•  If (u,v) ∈ E  
–  Then v is a neighbor of u, i.e., v is adjacent to u 
–  Order matters for directed edges 

• u is not adjacent to v unless (v,u) ∈ E 
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Examples again 

Which would use directed edges?  Which would have self-edges?  
Which would be connected?  Which could have 0-degree nodes? 

 
1.  Web pages with links 
2.  Facebook friends 
3.  “Input data” for the Kevin Bacon game 
4.  Methods in a program that call each other 
5.  Road maps (e.g., Google maps) 
6.  Airline routes 
7.  Family trees 
8.  Course pre-requisites 
 
 

Winter 2014 12 CSE373: Data Structures & Algorithms 



Weighted Graphs 
•  In a weighed graph, each edge has a weight a.k.a. cost 

–  Typically numeric (most examples use ints) 
–  Orthogonal  to whether graph is directed 
–  Some graphs allow negative weights; many do not 
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Examples 

What, if anything, might weights represent for each of these?   
Do negative weights make sense? 
 
•  Web pages with links 
•  Facebook friends 
•  “Input data” for the Kevin Bacon game 
•  Methods in a program that call each other 
•  Road maps (e.g., Google maps) 
•  Airline routes 
•  Family trees 
•  Course pre-requisites 
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Paths and Cycles 

•  A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1)∈ 
E for all 0 ≤ i < n.  Say “a path from v0 to vn” 

•  A cycle is a path that begins and ends at the same node (v0==vn) 
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Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 



Path Length and Cost 
•  Path length: Number of edges in a path 
•  Path cost: Sum of  weights of edges in a path 

Example where 
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 

Winter 2014 16 CSE373: Data Structures & Algorithms 

Chicago 
Seattle 

San Francisco Dallas 

Salt Lake City 

3.5 

2 2 

2.5 

3 

2 
2.5 

2.5 

 
length(P) = 5 
  cost(P) = 11.5 
 



Simple Paths and Cycles 

•  A simple path repeats no vertices, except the first might be the 
last 
[Seattle, Salt Lake City, San Francisco, Dallas] 
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 

 
•  Recall, a cycle is a path that  ends where it begins 

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 
[Seattle, Salt Lake City, Seattle, Dallas, Seattle] 

 
•  A simple cycle is a cycle and a simple path 

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 
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Paths and Cycles in Directed Graphs 

Example: 
 
 
 
 
 
 
Is there a path from A to D? 
 
Does the graph contain any cycles? 
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Paths and Cycles in Directed Graphs 

Example: 
 
 
 
 
 
 
Is there a path from A to D?    No 
 
Does the graph contain any cycles?     
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Paths and Cycles in Directed Graphs 

Example: 
 
 
 
 
 
 
Is there a path from A to D?    No 
 
Does the graph contain any cycles?    No 
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Undirected-Graph Connectivity 

•  An undirected graph is connected if for all 
pairs of vertices u,v, there exists a path from u to v 

•  An undirected graph is complete, a.k.a. fully connected if for all 
pairs of vertices u,v, there exists an edge from u to v 
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Directed-Graph Connectivity 

•  A directed graph is strongly connected if 
there is a path from every vertex to every 
other vertex 

•  A directed graph is weakly connected if 
there is a path from every vertex to every 
other vertex ignoring direction of edges 

•  A complete a.k.a. fully connected directed 
graph has an edge from every vertex to 
every other vertex 

Winter 2014 22 CSE373: Data Structures & Algorithms 

plus self edges 



Examples 

For undirected graphs: connected?   
For directed graphs: strongly connected? weakly connected? 
 
•  Web pages with links 
•  Facebook friends 
•  “Input data” for the Kevin Bacon game 
•  Methods in a program that call each other 
•  Road maps (e.g., Google maps) 
•  Airline routes 
•  Family trees 
•  Course pre-requisites 
•  … 
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Trees as Graphs 

When talking about graphs,  
we say a tree is a graph that is: 

–  Undirected 
–  Acyclic 
–  Connected 

So all trees are graphs, but not 
all graphs are trees 
 

How does this relate to the trees 
we know and love?... 
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Rooted Trees 
•  We are more accustomed to rooted trees where: 

–  We identify a unique root 
–  We think of edges as directed: parent to children 

•  Given a tree, picking a root gives a unique rooted tree  
–  The tree is just drawn differently and with undirected edges 
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Rooted Trees 
•  We are more accustomed to rooted trees where: 

–  We identify a unique root 
–  We think of edges as directed: parent to children 

•  Given a tree, picking a root gives a unique rooted tree  
–  The tree is just drawn differently and with undirected edges 
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Directed Acyclic Graphs (DAGs) 
•  A DAG is a directed graph with no (directed) cycles 

–  Every rooted directed tree is a DAG 
–  But not every DAG is a rooted directed tree 

–  Every DAG is a directed graph 
–  But not every directed graph is a DAG 
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Examples 

Which of our directed-graph examples do you expect to be a DAG? 
 
•  Web pages with links 
•  “Input data” for the Kevin Bacon game 
•  Methods in a program that call each other 
•  Airline routes 
•  Family trees 
•  Course pre-requisites 
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Density / Sparsity 

•  Recall: In an undirected graph, 0 ≤ |E| < |V|2 

•  Recall: In a directed graph: 0 ≤ |E| ≤ |V|2 

•  So for any graph, O(|E|+|V|2) is O(|V|2) 

•  Another fact: If an undirected graph is connected, then |V|-1 ≤ |E| 

•  Because |E| is often much smaller than its maximum size, we do not 
always approximate |E| as O(|V|2) 
–  This is a correct bound, it just is often not tight 
–  If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense 

•  More sloppily, dense means “lots of edges” 
–  If |E| is O(|V|) we say the graph is sparse 

•  More sloppily, sparse means “most possible edges missing” 
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What is the Data Structure? 

•  So graphs are really useful for lots of data and questions  
–  For example, “what’s the lowest-cost path from x to y” 

•  But we need a data structure that represents graphs 

•  The “best one” can depend on: 
–  Properties of the graph (e.g., dense versus sparse) 
–  The common queries (e.g., “is (u,v) an edge?” versus 

“what are the neighbors of node u?”) 

•  So we’ll discuss the two standard graph representations 
–  Adjacency Matrix and Adjacency List 
–  Different trade-offs, particularly time versus space 
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Adjacency Matrix 

•  Assign each node a number from 0 to |V|-1 
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0) 

–  If M is the matrix, then M[u][v] being true                    
means there is an edge from u to v 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges:  
–  Get a vertex’s in-edges:  
–  Decide if some edge exists:  
–  Insert an edge:  
–  Delete an edge:  

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges:  
–  Decide if some edge exists:  
–  Insert an edge:  
–  Delete an edge:  

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists:  
–  Insert an edge:  
–  Delete an edge:  

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists: O(1) 
–  Insert an edge:  
–  Delete an edge:  

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists: O(1) 
–  Insert an edge: O(1) 
–  Delete an edge:  

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists: O(1) 
–  Insert an edge: O(1) 
–  Delete an edge: O(1) 

•  Space requirements: 

 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists: O(1) 
–  Insert an edge: O(1) 
–  Delete an edge: O(1) 

•  Space requirements: 
–  |V|2 bits 
 

•  Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

•  Running time to: 
–  Get a vertex’s out-edges: O(|V|) 
–  Get a vertex’s in-edges: O(|V|) 
–  Decide if some edge exists: O(1) 
–  Insert an edge: O(1) 
–  Delete an edge: O(1) 

•  Space requirements: 
–  |V|2 bits 
 

•  Best for sparse or dense graphs? 
–  Best for dense graphs 
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Adjacency Matrix Properties 

•  How will the adjacency matrix vary for an undirected graph? 

•  How can we adapt the representation for weighted graphs? 
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Adjacency Matrix Properties 

•  How will the adjacency matrix vary for an undirected graph? 
–  Undirected will be symmetric around the diagonal 

•  How can we adapt the representation for weighted graphs? 
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Adjacency Matrix Properties 

•  How will the adjacency matrix vary for an undirected graph? 
–  Undirected will be symmetric around the diagonal 

•  How can we adapt the representation for weighted graphs? 
–  Instead of a Boolean, store a number in each cell 
–  Need some value to represent ‘not an edge’ 

•  In some situations, 0 or -1 works 
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Adjacency List 

•  Assign each node a number from 0 to |V|-1 
•  An array of length |V| in which each entry stores a list of all 

adjacent vertices (e.g., linked list) 
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

   
–  Get all of a vertex’s in-edges: 

   
–  Decide if some edge exists:  

   
–  Insert an edge:   
–  Delete an edge:   

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

   
–  Decide if some edge exists:  

   
–  Insert an edge:   
–  Delete an edge:   

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

   
–  Insert an edge:   
–  Delete an edge:   

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge:   
–  Delete an edge:   

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge: O(1) (unless you need to check if it’s there)  
–  Delete an edge:   

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge: O(1) (unless you need to check if it’s there)  
–  Delete an edge: O(d) where d is out-degree of source  

•  Space requirements: 
 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge: O(1) (unless you need to check if it’s there)  
–  Delete an edge: O(d) where d is out-degree of source  

•  Space requirements: 
–  O(|V|+|E|) 
 

•  Best for dense or sparse graphs?  
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Adjacency List Properties 

•  Running time to: 
–  Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex    
–  Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!)  
–  Decide if some edge exists:  

 O(d) where d is out-degree of source 
–  Insert an edge: O(1) (unless you need to check if it’s there)  
–  Delete an edge: O(d) where d is out-degree of source  

•  Space requirements: 
–  O(|V|+|E|) 
 

•  Best for dense or sparse graphs?  
–  Best for sparse graphs, so usually just stick with linked lists 
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Undirected Graphs 
Adjacency matrices & adjacency lists both do fine for undirected graphs 
•  Matrix: Can save roughly 2x space 

–  But may slow down operations in languages with “proper” 2D 
arrays (not Java, which has only arrays of arrays) 

–  How would you “get all neighbors”? 
•  Lists: Each edge in two lists to support efficient “get all neighbors” 

Example: 
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Next… 

Okay, we can represent graphs 
 
Now let’s implement some useful and non-trivial algorithms 

•  Topological sort: Given a DAG, order all the vertices so that 
every vertex comes before all of its neighbors 

•  Shortest paths: Find the shortest or lowest-cost path from x to y 
–  Related: Determine if there even is such a path 
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Topological Sort 

Problem: Given a DAG G=(V,E), output all vertices in an order such 
that no vertex appears before another vertex that has an edge to it 

 
Example input: 
 
 
 
 
 
 
 
One example output: 
     126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415 
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Questions and comments 

•  Why do we perform topological sorts only on DAGs? 
–  Because a cycle means there is no correct answer 

•  Is there always a unique answer? 
–  No, there can be 1 or more answers; depends on the graph 
–  Graph with 5 topological orders:  

•  Do some DAGs have exactly 1 answer? 
–  Yes, including all lists  

•  Terminology: A DAG represents a partial order and a topological 
sort produces a total order that is consistent with it 
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Uses 

•  Figuring out how to graduate 

•  Computing an order in which to recompute cells in a spreadsheet 

•  Determining an order to compile files using a Makefile 

•  In general, taking a dependency graph and finding an order of 
execution  

 
•  … 
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A First Algorithm for Topological Sort 

1.  Label (“mark”) each vertex with its in-degree 
–  Think “write in a field in the vertex” 
–  Could also do this via a data structure (e.g., array) on the side 

2.  While there are vertices not yet output: 
a)  Choose a vertex v with labeled with in-degree of 0 
b)  Output v and conceptually remove it from the graph 
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u 
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