

CSE373: Data Structures and Algorithms Lecture 2: Math Review; Algorithm Analysis

Aaron Bauer Winter 2014

Today

- Any questions on stacks and queues?
- Review math essential to algorithm analysis
 - Proof by induction
 - Powers of 2
 - Binary numbers
 - Exponents and logarithms
- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

Mathematical induction

Suppose *P*(*n*) is some predicate (mentioning integer *n*)

– Example: $n \ge n/2 + 1$

To prove P(n) for all integers $n \ge n_0$, it suffices to prove

- 1. $P(n_0)$ called the "basis" or "base case"
- 2. If P(k), then P(k+1) called the "induction step" or "inductive case"

Why we will care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

P(n) = "the sum of the first *n* powers of 2 (starting at 0) is 2ⁿ-1"

Theorem: P(n) holds for all $n \ge 1$ Proof: By induction on n

- Base case: n=1. Sum of first 1 power of 2 is 2^0 , which equals 1. And for n=1, 2^n-1 equals 1.
- Inductive case:
 - Assume the sum of the first *k* powers of 2 is 2^{k} -1

- Show the sum of the first (*k*+1) powers of 2 is 2^{k+1} -1 Using assumption, sum of the first (*k*+1) powers of 2 is $(2^{k}-1) + 2^{(k+1)-1} = (2^{k}-1) + 2^{k} = 2^{k+1}-1$

n	1	2	3	4
sum of first n powers of 2	2 ⁰ = 1	1 + 2 ¹ = 3	$3 + 2^2 = 7$	7 + 2 ³ = 15
P(n)	2 ¹ - 1 = 1			

n	1	2	3	4
sum of first n powers of 2	2 ⁰ = 1	1 + 2 ¹ = 3	$3 + 2^2 = 7$	7 + 2 ³ = 15
P(n)	$2^1 - 1 = 1$	$2^2 - 1 = 3$		

n	1	2	3	4
sum of first n powers of 2	2 ⁰ = 1	$1 + 2^1 = 3$	$3 + 2^2 = 7$	7 + 2 ³ = 15
P(n)	$2^1 - 1 = 1$	$2^2 - 1 = 3$	$2^3 - 1 = 17$	

n	1	2	3	4	
sum of first n powers of 2	2 ⁰ = 1	$1 + 2^1 = 3$	$3 + 2^2 = 7$	7 + 2 ³ = 15	
P(n)	2 ¹ - 1 = 1	$2^2 - 1 = 3$	2 ³ - 1 = 17	2 ⁴ - 1 = 15	

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of *n* bits can represent 2ⁿ distinct things
 For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

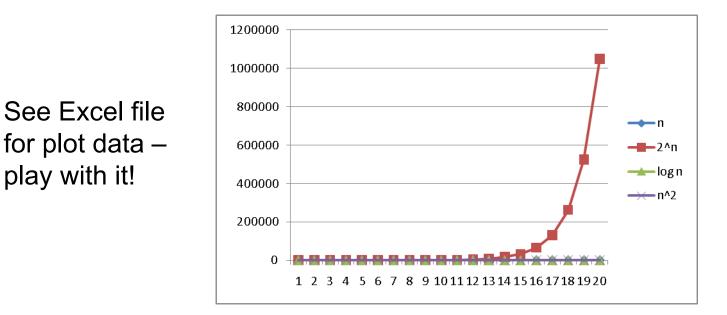
Therefore

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

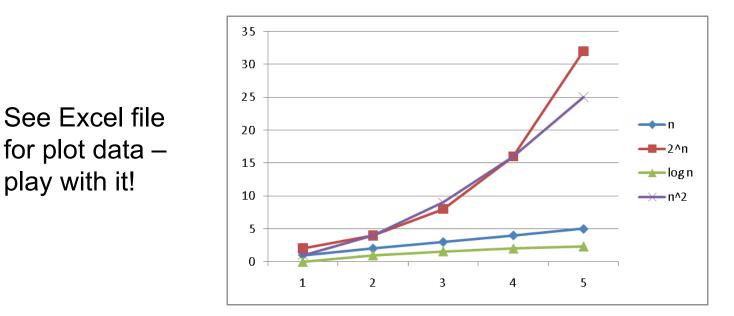
So if a password is 128 bits long and randomly generated, do you think you could guess it?

- Since so much is binary in CS log almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

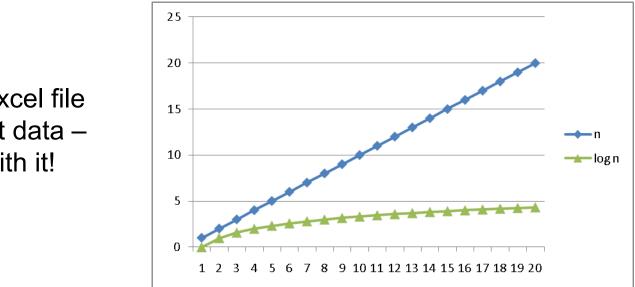


Winter 2014

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

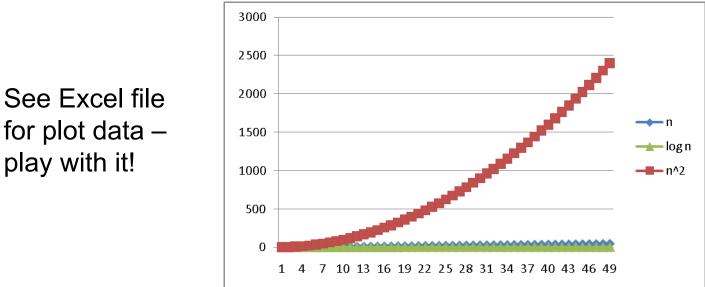


- Since so much is binary log in CS almost always means log₂ ٠
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$ ٠
- So, **log**₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly ٠



See Excel file for plot data – play with it!

- Since so much is binary log in CS almost always means log₂ ٠
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$ ٠
- So, **log**₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly ٠



Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2^y} grows quickly
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2
 - It is not the same as log log x

Log base doesn't matter much!

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general,

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Floor and ceiling

$\begin{bmatrix} X \end{bmatrix} \quad \text{Floor function: the largest integer} \le X$ $\begin{bmatrix} 2.7 \end{bmatrix} = 2 \quad \begin{bmatrix} -2.7 \end{bmatrix} = -3 \quad \begin{bmatrix} 2 \end{bmatrix} = 2$ $\begin{bmatrix} X \end{bmatrix} \quad \text{Ceiling function: the smallest integer} \ge X$

[2.3] = 3 [-2.3] = -2 [2] = 2

Floor and ceiling properties

1.
$$X-1 < [X] \le X$$

2. $X \le [X] < X+1$
3. $[n/2]+[n/2] = n$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows

- (integer, length of array, size of queue, etc.):
 - How much longer does the algorithm take (time)
 - How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

- Usually more important, naturally

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

• Correctness: For any $N \ge 0$, it returns...

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

- Correctness: For any $N \ge 0$, it returns 3N(N+1)/2
- Proof: By induction on n
 - P(n) = after outer for-loop executes *n* times, **x** holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.
 Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

- Running time: For any $N \ge 0$,
 - Assignments, additions, returns take "1 unit time"
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that...

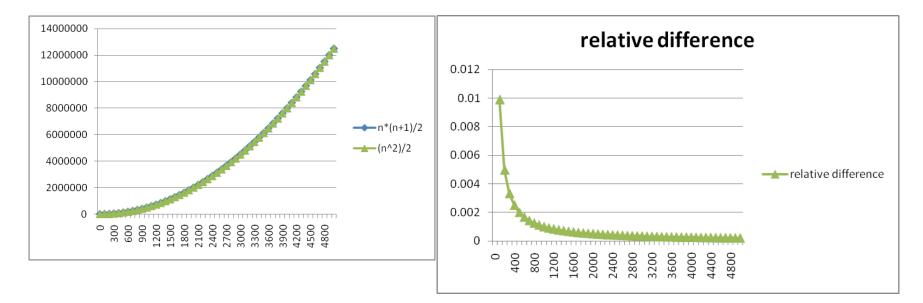
• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

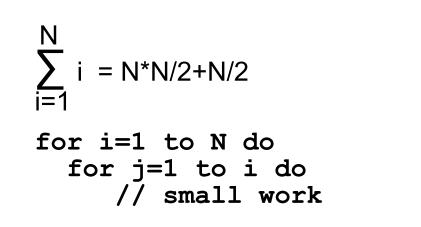
- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - Proof is by induction on N, known for centuries
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

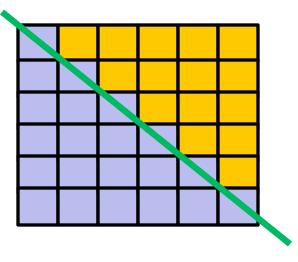
Lower-order terms don't matter

N*(N+1)/2 vs. just N²/2



Geometric interpretation





- Area of square: N*N
- Area of lower triangle of square: N*N/2
- Extra area from squares crossing the diagonal: N*1/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Big-O: Common Names

<i>O</i> (1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
$O(\log n)$	logarithmic
<i>O</i> (<i>n</i>)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
<i>O</i> (<i>n</i> ²)	quadratic
<i>O</i> (<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)
$O(k^n)$	exponential (where <i>k</i> is any constant > 1)

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

- A savings account accrues interest exponentially (k=1.01?)
- If you don't know k, you probably don't know it's exponential