
CSE373: Data Structure & Algorithms

Lecture 21: More Comparison Sorting

Aaron Bauer
Winter 2014

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
–  An array A of data records
–  A key value in each data record
–  A comparison function (consistent and total)

Effect:
–  Reorganize the elements of A such that for any i and j,

if i < j then A[i] ≤ A[j]
–  (Also, A must have exactly the same data it started with)
–  Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
Winter 2014 2 CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Winter 2014 3 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time and space:

To sort n elements, we:

–  Return immediately if n=1
–  Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:
 T(1) = c1

 T(n) = 2T(n/2) + c2n

Winter 2014 4 CSE373: Data Structures & Algorithms

One of the recurrence classics…

For simplicity let constants be 1 – no effect on asymptotic answer

T(1) = 1 So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k
 = 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n
 = 4T(n/4) + 2n = n + n log n
 = 4(2T(n/8) + n/4) + 2n = O(n log n)
 = 8T(n/8) + 3n
 ….
 = 2kT(n/2k) + kn

Winter 2014 5 CSE373: Data Structures & Algorithms

Or more intuitively…
This recurrence is common you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):
•  The recursion “tree” will have log n height
•  At each level we do a total amount of merging equal to n

Winter 2014 6 CSE373: Data Structures & Algorithms

Quicksort

•  Also uses divide-and-conquer
–  Recursively chop into two pieces
–  Instead of doing all the work as we merge together,

we will do all the work as we recursively split into halves

–  Unlike merge sort, does not need auxiliary space

•  O(n log n) on average J, but O(n2) worst-case L

•  Faster than merge sort in practice?
–  Often believed so
–  Does fewer copies and more comparisons, so it depends on

the relative cost of these two operations!

Winter 2014 7 CSE373: Data Structures & Algorithms

Quicksort Overview

1.  Pick a pivot element

2.  Partition all the data into:
A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

3.  Recursively sort A and C

4.  The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

Winter 2014 8 CSE373: Data Structures & Algorithms

Think in Terms of Sets

Winter 2014 9 CSE373: Data Structures & Algorithms

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Example, Showing Recursion

Winter 2014 10 CSE373: Data Structures & Algorithms

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

Details

Have not yet explained:

•  How to pick the pivot element

–  Any choice is correct: data will end up sorted
–  But as analysis will show, want the two partitions to be about

equal in size

•  How to implement partitioning
–  In linear time
–  In place

Winter 2014 11 CSE373: Data Structures & Algorithms

Pivots

•  Best pivot?
–  Median
–  Halve each time

•  Worst pivot?
–  Greatest/least element
–  Problem of size n - 1
–  O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

Winter 2014 CSE373: Data Structures & Algorithms 12

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

•  Pick arr[lo] or arr[hi-1]

–  Fast, but worst-case occurs with mostly sorted input

•  Pick random element in the range
–  Does as well as any technique, but (pseudo)random number

generation can be slow
–  Still probably the most elegant approach

•  Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
–  Common heuristic that tends to work well

Winter 2014 13 CSE373: Data Structures & Algorithms

Partitioning

•  Conceptually simple, but hardest part to code up correctly
–  After picking pivot, need to partition in linear time in place

•  One approach (there are slightly fancier ones):
1.  Swap pivot with arr[lo]
2.  Use two fingers i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Winter 2014 14 CSE373: Data Structures & Algorithms

Example

•  Step one: pick pivot as median of 3
–  lo = 0, hi = 10

Winter 2014 15 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8 0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6 0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Winter 2014 16 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Analysis

•  Best-case: Pivot is always the median
 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as mergesort: O(n log n)

•  Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1
 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

•  Average-case (e.g., with random pivot)

–  O(n log n), not responsible for proof (in text)

Winter 2014 17 CSE373: Data Structures & Algorithms

Cutoffs

•  For small n, all that recursion tends to cost more than doing a
quadratic sort
–  Remember asymptotic complexity is for large n

•  Common engineering technique: switch algorithm below a cutoff
–  Reasonable rule of thumb: use insertion sort for n < 10

•  Notes:
–  Could also use a cutoff for merge sort
–  Cutoffs are also the norm with parallel algorithms

•  Switch to sequential algorithm
–  None of this affects asymptotic complexity

Winter 2014 18 CSE373: Data Structures & Algorithms

Cutoff skeleton

Winter 2014 19 CSE373: Data Structures & Algorithms

void quicksort(int[] arr, int lo, int hi) {
 if(hi – lo < CUTOFF)
 insertionSort(arr,lo,hi);
 else
 …
}

Notice how this cuts out the vast majority of the recursive calls
–  Think of the recursive calls to quicksort as a tree
–  Trims out the bottom layers of the tree

Visualizations

•  http://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Winter 2014 20 CSE373: Data Structures & Algorithms

How Fast Can We Sort?

•  Heapsort & mergesort have O(n log n) worst-case running time

•  Quicksort has O(n log n) average-case running time

•  These bounds are all tight, actually Θ(n log n)

•  So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)
–  Instead: we know that this is impossible

•  Assuming our comparison model: The only operation an
algorithm can perform on data items is a 2-element
comparison

Winter 2014 21 CSE373: Data Structures & Algorithms

A General View of Sorting

•  Assume we have n elements to sort
–  For simplicity, assume none are equal (no duplicates)

•  How many permutations of the elements (possible orderings)?

•  Example, n=3
 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

 a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

•  In general, n choices for least element, n-1 for next, n-2 for next, …
–  n(n-1)(n-2)…(2)(1) = n! possible orderings

Winter 2014 22 CSE373: Data Structures & Algorithms

Counting Comparisons

•  So every sorting algorithm has to “find” the right answer among
the n! possible answers
–  Starts “knowing nothing”, “anything is possible”
–  Gains information with each comparison
–  Intuition: Each comparison can at best eliminate half the

remaining possibilities
–  Must narrow answer down to a single possibility

•  What we can show:
 Any sorting algorithm must do at least (1/2)nlog n – (1/2)n
 (which is Ω(n log n)) comparisons

–  Otherwise there are at least two permutations among the n!
possible that cannot yet be distinguished, so the algorithm
would have to guess and could be wrong [incorrect algorithm]

Winter 2014 23 CSE373: Data Structures & Algorithms

Optional: Counting Comparisons

•  Don’t know what the algorithm is, but it cannot make progress
without doing comparisons
–  Eventually does a first comparison “is a < b ?"
–  Can use the result to decide what second comparison to do
–  Etc.: comparison k can be chosen based on first k-1 results

•  Can represent this process as a decision tree

–  Nodes contain “set of remaining possibilities”
•  Root: None of the n! options yet eliminated

–  Edges are “answers from a comparison”
–  The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know
so far” as the algorithm progresses

Winter 2014 24 CSE373: Data Structures & Algorithms

Optional: One Decision Tree for n=3

Winter 2014 25 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

•  The leaves contain all the possible orderings of a, b, c
•  A different algorithm would lead to a different tree

Optional: Example if a < c < b

Winter 2014 26 CSE373: Data Structures & Algorithms

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

Optional: What the Decision Tree Tells Us

•  A binary tree because each comparison has 2 outcomes
–  (We assume no duplicate elements)
–  (Would have 1 outcome if algorithm asks redundant questions)

•  Because any data is possible, any algorithm needs to ask enough
questions to produce all n! answers
–  Each answer is a different leaf
–  So the tree must be big enough to have n! leaves
–  Running any algorithm on any input will at best correspond to a

root-to-leaf path in some decision tree with n! leaves
–  So no algorithm can have worst-case running time better than

the height of a tree with n! leaves
•  Worst-case number-of-comparisons for an algorithm is an

input leading to a longest path in algorithm’s decision tree
Winter 2014 27 CSE373: Data Structures & Algorithms

Optional: Where are we

•  Proven: No comparison sort can have worst-case running time
better than the height of a binary tree with n! leaves
–  A comparison sort could be worse than this height, but it

cannot be better

•  Now: a binary tree with n! leaves has height Ω(n log n)
–  Height could be more, but cannot be less
–  Factorial function grows very quickly

•  Conclusion: Comparison sorting is Ω (n log n)
–  An amazing computer-science result: proves all the clever

programming in the world cannot comparison-sort in linear
time

Winter 2014 28 CSE373: Data Structures & Algorithms

Optional: Height lower bound

•  The height of a binary tree with L leaves is at least log2 L
•  So the height of our decision tree, h:

 h ≥ log2 (n!) property of binary trees
 = log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial
 = log2 n + log2 (n-1) + … + log2 1 property of logarithms
 ≥ log2 n + log2 (n-1) + … + log2 (n/2) drop smaller terms (≥0)
 ≥ log2 (n/2) + log2 (n/2) + … + log2 (n/2) shrink terms to log2 (n/2)
 = (n/2)log2 (n/2) arithmetic
 = (n/2)(log2 n - log2 2) property of logarithms
 = (1/2)nlog2 n – (1/2)n arithmetic
 “=“ Ω (n log n)

Winter 2014 29 CSE373: Data Structures & Algorithms

