CSE373: Data Structure & Algorithms

Lecture 21: More Comparison Sorting

Aaron Bauer
Winter 2014

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
— An array A of data records
— A key value in each data record
— A comparison function (consistent and total)

Effect:
— Reorganize the elements of A such that for any i and 3,
ifi < jthenA[i] = A[]]
— (Also, A must have exactly the same data it started with)
— Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Winter 2014 CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting
Shell sort Quick sort (avg)

Winter 2014 CSE373: Data Structures & Algorithms 3

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time and space:

To sort n elements, we:
— Return immediately if n=1
— Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

T(1) = ¢,
T(n) =2T(n/2) + c,n

Winter 2014 CSE373: Data Structures & Algorithms

One of the recurrence classics...

For simplicity let constants be 1 — no effect on asymptotic answer

T(1)=1 So total is 2KT(n/2¥) + kn where
T(n) = 2T(n/2) + n n/2k=1,i.e., logn=k
= 2(2T(n/4) + n/2) + n That is, 219" T(1) + n log n
=4T(n/4) + 2n =n+nlogn
=4(2T(n/8) + n/4) + 2n = O(n log n)

= 8T(n/8) + 3n

= 2kT(n/2K) + kn

Winter 2014 CSE373: Data Structures & Algorithms 5

Or more intuitively...

This recurrence is common you just “know” it's O(n 1og n)

Merge sort is relatively easy to intuit (best, worst, and average):
« The recursion “tree” will have log n height
» At each level we do a total amount of merging equal to n

812|194 |5|3 |16

Divide S T
o 82 9 4 5316
Divide e g By
Bria, B 9 4 53 L6
ivide
P PO ' % =g
1 element 8 2 9 4 s 3 1 6
Y4 W Y4 4
Merge 28 9 35 16
Merge \/ \/
2. 4809 1356
Merge

1 2345689

Winter 2014 CSE373: Data Structures & Algorithms

Quicksort

» Also uses divide-and-conquer
— Recursively chop into two pieces

— Instead of doing all the work as we merge together,
we will do all the work as we recursively split into halves

— Unlike merge sort, does not need auxiliary space
« O(n log n) on average ©, but O(n?) worst-case ®

» Faster than merge sort in practice?
— Often believed so

— Does fewer copies and more comparisons, so it depends on
the relative cost of these two operations!

Winter 2014 CSE373: Data Structures & Algorithms

Quicksort Overview

1. Pick a pivot element
2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot
3. Recursively sort Aand C

4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

Winter 2014 CSE373: Data Structures & Algorithms

Think in Terms of Sefts

S 13 81 43 3% select pivot value
SC IO
S- S. partition S

Quicksort(S,) and
S1 SZ (

Quicksort(S,)
S @1 43 57 65 '758) Presto! S is sorted
[Weiss]

Winter 2014 CSE373: Data Structures & Algorithms 9

Example, Showing Recursion

Divide «— 5 B——
. 2431 B 8 9 6
2 1 4 6 8 9
Divide
\
1 Element 12
[/
Conquer w
Conquer \ ' v
a 1 2 3 4 6 89
Conquer\’ ' —

1 23456389

Winter 2014 CSE373: Data Structures & Algorithms 10

Details

Have not yet explained:

 How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to be about
equal in size

* How to implement partitioning

— In linear time
— In place

Winter 2014 CSE373: Data Structures & Algorithms 11

Pivots

» Best pivot? 82191415316
— Median — s —
— Halve each time 24 31 = 8 9 6

* Worst pivot?
— Greatest/least element
. <« B
— Problem of size n - 1 1 8204536

Winter 2014 CSE373: Data Structures & Algorithms 12

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...

* Pick arr[lo] orarr[hi-1]
— Fast, but worst-case occurs with mostly sorted input

* Pick random element in the range

— Does as well as any technique, but (pseudo)random number
generation can be slow

— Still probably the most elegant approach

« Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo) /2]
— Common heuristic that tends to work well

Winter 2014 CSE373: Data Structures & Algorithms 13

Partitioning

« Conceptually simple, but hardest part to code up correctly
— After picking pivot, need to partition in linear time in place

* One approach (there are slightly fancier ones):
1. Swap pivot with arr[1lo]
2. Use two fingers i and j, starting at 1o+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) J-—-
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Winter 2014 CSE373: Data Structures & Algorithms

14

Example

« Step one: pick pivot as median of 3
— 1lo0=0,hi =10

=N
O W
o
W (U
U1 o
N N
< ©

0 1
8|1

o) (©

» Step two: move pivot to the 1o position

NN
~J [0

5 6
3|5

o) O
-
N
O W
o |a

Winter 2014 CSE373: Data Structures & Algorithms

15

Often have more than

EX m / one swap during partition —
ampie this is a short example

Now partitioninplace |g11/4/9/0/3|/5(2/71!8

/ /
Move fingers 6/14/9/0/3/5(2|7|8
/ /
Swap 6|14, 2/0(3/5/9|7|8
/ /
Move fingers
6/14/2/0/3/5/9(7|8
Va

Move pivot 5/1/4l/2]/0]/3/6/9|7]8

Winter 2014 CSE373: Data Structures & Algorithms 16

Analysis

« Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n 1og n)

 Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n)=1T(n-1) +n
Basically same recurrence as selection sort: O(n?)

» Average-case (e.g., with random pivot)
— O(n 1og n), not responsible for proof (in text)

Winter 2014 CSE373: Data Structures & Algorithms

17

Cutoffs

For small n, all that recursion tends to cost more than doing a
quadratic sort

— Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm below a cutoff
— Reasonable rule of thumb: use insertion sort for n < 10

Notes:
— Could also use a cutoff for merge sort

— Cutoffs are also the norm with parallel algorithms
« Switch to sequential algorithm
— None of this affects asymptotic complexity

Winter 2014 CSE373: Data Structures & Algorithms 18

Cutoff skeleton

void quicksort(int[] arr, int lo, int hi) {
if(hi - lo < CUTOFF)
insertionSort(arr,lo,hi) ;
else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

Winter 2014 CSE373: Data Structures & Algorithms

19

Visualizations

« http://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Winter 2014 CSE373: Data Structures & Algorithms

20

How Fast Can We Sort?

Heapsort & mergesort have O(n 1og n) worst-case running time
* Quicksort has O(n 1og n) average-case running time
* These bounds are all tight, actually ®(n 1og n)

« So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log h)

— Instead: we know that this is impossible

» Assuming our comparison model: The only operation an
algorithm can perform on data items is a 2-element
comparison

Winter 2014 CSE373: Data Structures & Algorithms 21

A General View of Sorting

Assume we have n elements to sort
— For simplicity, assume none are equal (no duplicates)

How many permutations of the elements (possible orderings)?
Example, n=3
a[0]<a[1]<a[2] a[0]<al2]<a[1] a[1]<a[0]<a[2]
a[1]<al2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]
In general, n choices for least element, n-1 for next, n-2 for next, ...

— n(n-1)(n-2)...(2)(1) = n! possible orderings

Winter 2014 CSE373: Data Structures & Algorithms 22

Counting Comparisons

« So every sorting algorithm has to “find” the right answer among
the n! possible answers

— Starts “knowing nothing”, “anything is possible”
— Gains information with each comparison

— Intuition: Each comparison can at best eliminate half the
remaining possibilities
— Must narrow answer down to a single possibility

 What we can show:
Any sorting algorithm must do at least (1/2)nlogn - (1/2)n
(which is Q(n 1og n)) comparisons

— Otherwise there are at least two permutations among the n!
possible that cannot yet be distinguished, so the algorithm
would have to guess and could be wrong [incorrect algorithm]

Winter 2014 CSE373: Data Structures & Algorithms 23

Optional: Counting Comparisons

« Don’t know what the algorithm is, but it cannot make progress
without doing comparisons

— Eventually does a first comparison “isa < b ?"
— Can use the result to decide what second comparison to do
— Etc.: comparison k can be chosen based on first k-7 results

« Can represent this process as a decision tree
— Nodes contain “set of remaining possibilities”
» Root: None of the n! options yet eliminated
— Edges are “answers from a comparison”

— The algorithm does not actually build the tree; it's what our
proof uses to represent “the most the algorithm could know
so far” as the algorithm progresses

Winter 2014 CSE373: Data Structures & Algorithms

24

Optional: One Decision Tree for n=3

a<b<c¢b<c<a,
a<c<b,c<a<b,
' b<a<c¢c,c<b<a]

c<a<b c<b<a
PAN e
a<b<c¢c| ¢<a<b b<a<c¢c| ¢c<b<a
a<c<b b<£<a
bi}//\\g>c ci&/’ c>a
a<b<ec a<c<b b<c<a b<a<c¢

* The leaves contain all the possible orderings of a, b, ¢
* A different algorithm would lead to a different tree
Winter 2014 CSE373: Data Structures & Algorithms 25

a<b<c¢cb<c<a,
a<c<b,c<a<b,

b<a<e¢,c<b<a

a<b<c a<b
a<c<b
c<a<b

a<?/\\3>c

a<b<c
a<c<b

a<b<c

c<a<b

b<% w‘>c

a<c<b

Winter 2014

\ actual order

CSE373: Data Structures & Algorithms

a;F\‘

Optional: Example ifa<c<b

/ possible orders

26

Optional: What the Decision Tree Tells Us

* A binary tree because each comparison has 2 outcomes

— (We assume no duplicate elements)
— (Would have 1 outcome if algorithm asks redundant questions)

 Because any data is possible, any algorithm needs to ask enough
questions to produce all n! answers

— Each answer is a different leaf
— So the tree must be big enough to have n! leaves

— Running any algorithm on any input will at best correspond to a
root-to-leaf path in some decision tree with n! leaves

— So no algorithm can have worst-case running time better than
the height of a tree with n! leaves

» Worst-case number-of-comparisons for an algorithm is an
input leading to a longest path in algorithm’s decision tree

Winter 2014 CSE373: Data Structures & Algorithms 27

Optional: Where are we

Proven: No comparison sort can have worst-case running time
better than the height of a binary tree with n! leaves

— A comparison sort could be worse than this height, but it
cannot be better

Now: a binary tree with n! leaves has height Q(n 1og n)
— Height could be more, but cannot be less
— Factorial function grows very quickly

Conclusion: Comparison sorting is Q (n Log n)

— An amazing computer-science result: proves all the clever
programming in the world cannot comparison-sort in linear
time

Winter 2014 CSE373: Data Structures & Algorithms

28

Optional: Height lower bound

« The height of a binary tree with L leaves is at least 1og, L
« So the height of our decision tree, h:

h = log, (n!) property of binary trees
= log, (n*(n-1)*(n-2)...(2)(1)) definition of factorial
=1log, N + log, (n-1) + ... + log, 1 property of logarithms
= log, n + log, (n-1) + ... + log, (n/2) drop smaller terms (=0)
> log, (n/2) + log, (n/2) + ... + 1log, (n/2) shrink terms to 1og, (n/2)
= (n/2)1og, (N/2) arithmetic
= (n/2)(1og, N - 1og, 2) property of logarithms
= (1/2)nlog, n = (1/2)n arithmetic
“="Q (n log n)

Winter 2014 CSE373: Data Structures & Algorithms 29

