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The main problem, stated carefully 

For now, assume we have n comparable elements in an array and 
we want to rearrange them to be in increasing order 

 

Input: 
–  An array A of data records 
–  A key value in each data record 
–  A comparison function (consistent and total) 

 

Effect: 
–  Reorganize the elements of A such that for any i and j,       

if i < j then A[i] ≤ A[j] 
–  (Also, A must have exactly the same data it started with) 
–  Could also sort in reverse order, of course 

An algorithm doing this is a comparison sort 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 



Mergesort Analysis 

Having defined an algorithm and argued it is correct, we should 
analyze its running time and space: 

 
To sort n elements, we: 

–  Return immediately if n=1 
–  Else do 2 subproblems of size n/2 and then an O(n) merge 

Recurrence relation: 
  T(1) = c1 

      T(n) = 2T(n/2) + c2n 
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One of the recurrence classics… 

For simplicity let constants be 1 – no effect on asymptotic answer 
 
T(1) = 1                                            So total is 2kT(n/2k) + kn where 

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k    
        = 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n 
        = 4T(n/4) + 2n                                     = n + n log n 
        = 4(2T(n/8) + n/4) + 2n                        = O(n log n) 
        = 8T(n/8) + 3n 
        …. 
        = 2kT(n/2k) + kn     

Winter 2014 5 CSE373: Data Structures & Algorithms 



Or more intuitively… 
This recurrence is common you just “know” it’s O(n log n) 
 
Merge sort is relatively easy to intuit (best, worst, and average): 
•  The recursion “tree” will have log n height 
•  At each level we do a total amount of merging equal to n 
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Quicksort 

•  Also uses divide-and-conquer 
–  Recursively chop into two pieces 
–  Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 

–  Unlike merge sort, does not need auxiliary space 
 

•  O(n log n) on average J, but O(n2) worst-case L 

•  Faster than merge sort in practice? 
–  Often believed so 
–  Does fewer copies and more comparisons, so it depends on 

the relative cost of these two operations! 

Winter 2014 7 CSE373: Data Structures & Algorithms 



Quicksort Overview 

1.  Pick a pivot element 

2.  Partition all the data into: 
A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 

3.  Recursively sort A and C 

4.  The answer is, “as simple as A, B, C”  

(Alas, there are some details lurking in this algorithm) 
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Think in Terms of Sets 
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13 
81 

92 
43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 81 92 
43 65 

31 

57 26 

75 0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Example, Showing Recursion 
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2  4   3   1 8   9   6 

2   1 9 4 6 

        2                 

   1   2                    

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 
1 Element 

8 2 9 4 5 3 1 6 

5 

8 3 

1 

6   8   9 



Details 

Have not yet explained: 
 
•  How to pick the pivot element 

–  Any choice is correct: data will end up sorted 
–  But as analysis will show, want the two partitions to be about 

equal in size 

•  How to implement partitioning 
–  In linear time 
–  In place 
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Pivots 

•  Best pivot? 
–  Median 
–  Halve each time 

•  Worst pivot? 
–  Greatest/least element 
–  Problem of size n - 1 
–  O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 
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Potential pivot rules 

While sorting arr from lo (inclusive) to hi (exclusive)… 
 
•  Pick arr[lo] or arr[hi-1] 

–  Fast, but worst-case occurs with mostly sorted input 

•  Pick random element in the range 
–  Does as well as any technique, but (pseudo)random number 

generation can be slow 
–  Still probably the most elegant approach 

•  Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 
–  Common heuristic that tends to work well 
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Partitioning 

•  Conceptually simple, but hardest part to code up correctly 
–  After picking pivot, need to partition in linear time in place 

•  One approach (there are slightly fancier ones): 
1.  Swap pivot with arr[lo] 
2.  Use two fingers i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 
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Example 

•  Step one: pick pivot as median of 3 
–  lo = 0, hi = 10 
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6 1 4 9 0 3 5 2 7 8 0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 0 1 2 3 4 5 6 7 8 9 



Example 

Now partition in place 
 
 
Move fingers 
 
 
Swap 
 
Move fingers 
 
 
Move pivot 
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6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  
one swap during partition –  
this is a short example 

5 1 4 2 0 3 6 9 7 8 



Analysis 

•  Best-case: Pivot is always the median 
  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as mergesort: O(n log n) 

 
•  Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 
 
•  Average-case (e.g., with random pivot) 

–  O(n log n), not responsible for proof (in text) 
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Cutoffs 

•  For small n, all that recursion tends to cost more than doing a 
quadratic sort 
–  Remember asymptotic complexity is for large n 

•  Common engineering technique: switch algorithm below a cutoff 
–  Reasonable rule of thumb: use insertion sort for n < 10 

•  Notes: 
–  Could also use a cutoff for merge sort 
–  Cutoffs are also the norm with parallel algorithms  

•  Switch to sequential algorithm 
–  None of this affects asymptotic complexity 
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Cutoff skeleton 
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void quicksort(int[] arr, int lo, int hi) { 
  if(hi – lo < CUTOFF) 
     insertionSort(arr,lo,hi); 
  else 
     … 
} 

Notice how this cuts out the vast majority of the recursive calls  
–    Think of the recursive calls to quicksort as a tree 
–    Trims out the bottom layers of the tree 



Visualizations 

•  http://www.cs.usfca.edu/~galles/visualization/Algorithms.html 
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How Fast Can We Sort? 

•  Heapsort & mergesort have O(n log n) worst-case running time 

•  Quicksort has O(n log n) average-case running time 

•  These bounds are all tight, actually Θ(n log n) 

•  So maybe we need to dream up another algorithm with a lower 
asymptotic complexity, such as O(n) or O(n  log log n) 
–  Instead: we know that this is impossible 

•  Assuming our comparison model: The only operation an 
algorithm can perform on data items is a 2-element 
comparison 
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A General View of Sorting 

•  Assume we have n elements to sort  
–  For simplicity, assume none are equal (no duplicates) 

•  How many permutations of the elements (possible orderings)? 

•  Example, n=3 
  a[0]<a[1]<a[2]  a[0]<a[2]<a[1]  a[1]<a[0]<a[2] 

      a[1]<a[2]<a[0]  a[2]<a[0]<a[1]  a[2]<a[1]<a[0] 

•  In general, n choices for least element, n-1 for next, n-2 for next, … 
–  n(n-1)(n-2)…(2)(1) = n!  possible orderings 
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Counting Comparisons 

•  So every sorting algorithm has to “find” the right answer among 
the n! possible answers 
–  Starts “knowing nothing”, “anything is possible” 
–  Gains information with each comparison 
–  Intuition: Each comparison can at best eliminate half  the 

remaining possibilities 
–  Must narrow answer down to a single possibility 

•  What we can show: 
   Any sorting algorithm must do at least (1/2)nlog n – (1/2)n    
  (which is Ω(n log n)) comparisons 

–  Otherwise there are at least two permutations among the n! 
possible that cannot yet be distinguished, so the algorithm 
would have to guess and could be wrong [incorrect algorithm] 
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Optional: Counting Comparisons 

•  Don’t know what the algorithm is, but it cannot make progress 
without doing comparisons 
–  Eventually does a first comparison “is a < b ?" 
–  Can use the result to decide what second comparison to do 
–  Etc.: comparison k can be chosen based on first k-1 results 

 
•  Can represent this process as a decision tree 

–  Nodes contain “set of remaining possibilities” 
•  Root: None of the n! options  yet eliminated 

–  Edges are “answers from a comparison” 
–  The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know 
so far” as the algorithm progresses 
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Optional: One Decision Tree for n=3 
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a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

•  The leaves contain all the possible orderings of a, b, c 
•  A different algorithm would lead to a different tree 



Optional: Example if a < c < b 
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a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 



Optional: What the Decision Tree Tells Us 

•  A binary tree because each comparison has 2 outcomes 
–  (We assume no duplicate elements) 
–  (Would have 1 outcome if algorithm asks redundant questions) 

•  Because any data is possible, any algorithm needs to ask enough 
questions to produce all n! answers 
–  Each answer is a different leaf 
–  So the tree must be big enough to have n! leaves 
–  Running any algorithm on any input will at best correspond to a 

root-to-leaf path in some decision tree with n! leaves 
–  So no algorithm can have worst-case running time better than 

the height of a tree with n! leaves 
•  Worst-case number-of-comparisons for an algorithm is an 

input leading to a longest path in algorithm’s decision tree 
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Optional: Where are we 

•  Proven: No comparison sort can have worst-case running time 
better than the height of a binary tree with n! leaves 
–  A comparison sort could be worse than this height, but it 

cannot be better 

•  Now: a binary tree with n! leaves has height Ω(n log n) 
–  Height could be more, but cannot be less 
–  Factorial function grows very quickly 

•  Conclusion: Comparison sorting is Ω (n log n) 
–  An amazing computer-science result: proves all the clever 

programming in the world cannot comparison-sort in linear 
time 
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Optional: Height lower bound 

•  The height of a binary tree with L leaves is at least log2 L 
•  So the height of our decision tree, h: 
 

   h ≥ log2 (n!)                                                      property of binary trees 
      = log2 (n*(n-1)*(n-2)…(2)(1))              definition of factorial 
      = log2 n       + log2 (n-1) + … + log2 1        property of logarithms 
      ≥ log2 n       + log2 (n-1)  + … + log2 (n/2) drop smaller terms (≥0) 
      ≥ log2 (n/2)  + log2 (n/2)  + … + log2 (n/2) shrink terms to log2 (n/2) 
      = (n/2)log2 (n/2)                                        arithmetic 
      = (n/2)(log2 n - log2 2)               property of logarithms 
      = (1/2)nlog2 n – (1/2)n          arithmetic 
      “=“ Ω (n log n) 
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