CSE373: Data Structure \& Algorithms
 Lecture 21: More Comparison Sorting

Aaron Bauer
Winter 2014

The main problem, stated carefully

For now, assume we have n comparable elements in an array and we want to rearrange them to be in increasing order

Input:

- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)

Effect:

- Reorganize the elements of \mathbf{A} such that for any i and j, if $\mathrm{i}<\mathrm{j}$ then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$
- (Also, A must have exactly the same data it started with)
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:
Simple
algorithms:
$\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
\square

Insertion sort
Selection sort Shell sort

Heap sort
Merge sort Quick sort (avg)

Specialized algorithms:

O(n)

Bucket sort
Radix sort

Handling huge data sets

External
sorting

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time and space:

To sort n elements, we:

- Return immediately if $n=1$
- Else do 2 subproblems of size $n / 2$ and then an $O(n)$ merge

Recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(1)=\mathrm{c}_{1} \\
& \mathrm{~T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{c}_{2} n
\end{aligned}
$$

One of the recurrence classics...

For simplicity let constants be 1 - no effect on asymptotic answer

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+n \\
& =2(2 T(n / 4)+n / 2)+n \\
& =4 T(n / 4)+2 n \\
& =4(2 T(n / 8)+n / 4)+2 n \\
& =8 T(n / 8)+3 n \\
& \cdots \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{aligned}
$$

So total is $2^{k} T\left(n / 2^{k}\right)+k n$ where

$$
n / 2^{k}=1 \text {, i.e., } \log n=k
$$

That is, $2^{\log n} T(1)+n \log n$

$$
=n+n \log n
$$

$$
=O(n \log n)
$$

Or more intuitively...

This recurrence is common you just "know" it's $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have $\log n$ height
- At each level we do a total amount of merging equal to n

Quicksort

- Also uses divide-and-conquer
- Recursively chop into two pieces
- Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
- Unlike merge sort, does not need auxiliary space
- $O(n \log n)$ on average \odot, but $O\left(n^{2}\right)$ worst-case $)^{\circ}$
- Faster than merge sort in practice?
- Often believed so
- Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C
4. The answer is, "as simple as A, B, C "
(Alas, there are some details lurking in this algorithm)

Think in Terms of Sets

[Weiss]

Example, Showing Recursion

Details

Have not yet explained:

- How to pick the pivot element
- Any choice is correct: data will end up sorted
- But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
- In linear time
- In place

Pivots

- Best pivot?
- Median
- Halve each time
- Worst pivot?
- Greatest/least element
- Problem of size n-1
- O(n^{2})

Potential pivot rules

While sorting arr from 10 (inclusive) to hi (exclusive)...

- Pick arr[lo] or arr[hi-1]
- Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
- Does as well as any technique, but (pseudo)random number generation can be slow
- Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
- Common heuristic that tends to work well

Partitioning

- Conceptually simple, but hardest part to code up correctly
- After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):

1. Swap pivot with arr [lo]
2. Use two fingers \mathbf{i} and j , starting at $10+1$ and hi-1
3. while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr [i] *
*skip step 4 if pivot ends up being least element

Example

- Step one: pick pivot as median of 3
- lo = 0, hi = 10

0	1	2	3	4	5	6	7	8
9	9							
8	1	4	9	0	3	5	2	7

- Step two: move pivot to the lo position

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 9 |
| :---: |
| 6 | 1

Often have more than

Example

one swap during partition this is a short example

Now partition in place

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 8 \\
\hline
\end{array}
$$

Move fingers

\[

\]

Swap

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 2 & 0 & 3 & 5 & 9 & 7 & 8 \\
\hline
\end{array}
$$

Move fingers

Move pivot

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 5 & 1 & 4 & 2 & 0 & 3 & 6 & 9 & 7 & 8 \\
\hline
\end{array}
$$

Analysis

- Best-case: Pivot is always the median
$\mathrm{T}(0)=\mathrm{T}(1)=1$
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad$-- linear-time partition
Same recurrence as mergesort: $O(n \log n)$
- Worst-case: Pivot is always smallest or largest element

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=1 \\
& \mathrm{~T}(n)=1 \mathrm{~T}(n-1)+n
\end{aligned}
$$

Basically same recurrence as selection sort: $O\left(n^{2}\right)$

- Average-case (e.g., with random pivot)
- O($n \log n$), not responsible for proof (in text)

Cutoffs

- For small n, all that recursion tends to cost more than doing a quadratic sort
- Remember asymptotic complexity is for large n
- Common engineering technique: switch algorithm below a cutoff
- Reasonable rule of thumb: use insertion sort for $n<10$
- Notes:
- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms
- Switch to sequential algorithm
- None of this affects asymptotic complexity

Cutoff skeleton

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
}
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Visualizations

- http://www.cs.usfca.edu/~galles/visualization/Algorithms.html

How Fast Can We Sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: we know that this is impossible
- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have n elements to sort
- For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, $n=3$

$$
\begin{array}{lll}
a[0]<a[1]<a[2] & a[0]<a[2]<a[1] & a[1]<a[0]<a[2] \\
a[1]<a[2]<a[0] & a[2]<a[0]<a[1] & a[2]<a[1]<a[0]
\end{array}
$$

- In general, n choices for least element, $n-1$ for next, n-2 for next, \ldots - $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n ! possible answers
- Starts "knowing nothing", "anything is possible"
- Gains information with each comparison
- Intuition: Each comparison can at best eliminate half the remaining possibilities
- Must narrow answer down to a single possibility
- What we can show:

Any sorting algorithm must do at least (1/2)nlog $n-(1 / 2) n$
(which is $\Omega(n \log n)$) comparisons

- Otherwise there are at least two permutations among the n ! possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong [incorrect algorithm]

Optional: Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
- Eventually does a first comparison "is $a<b$?"
- Can use the result to decide what second comparison to do
- Etc.: comparison k can be chosen based on first $k-1$ results
- Can represent this process as a decision tree
- Nodes contain "set of remaining possibilities"
- Root: None of the n ! options yet eliminated
- Edges are "answers from a comparison"
- The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

Optional: One Decision Tree for $n=3$

- The leaves contain all the possible orderings of $\mathbf{a}, \mathrm{b}, \mathrm{c}$
- A different algorithm would lead to a different tree

Optional: Example if $a<c<b$

Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
- (We assume no duplicate elements)
- (Would have 1 outcome if algorithm asks redundant questions)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n ! answers
- Each answer is a different leaf
- So the tree must be big enough to have n ! leaves
- Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n ! leaves
- So no algorithm can have worst-case running time better than the height of a tree with n ! leaves
- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Optional: Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n ! leaves
- A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n ! leaves has height $\Omega(n \log n)$
- Height could be more, but cannot be less
- Factorial function grows very quickly
- Conclusion: Comparison sorting is $\Omega(n \log n)$
- An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

Optional: Height lower bound

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :

$$
\begin{array}{rlrl}
h & \geq \log _{2}(n!) & & \text { property of binary trees } \\
& =\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) & & \text { definition of factorial } \\
& =\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 & & \text { property of logarithms } \\
& \geq \log _{2} n & +\log _{2}(n-1)+\ldots+\log _{2}(n / 2) \text { drop smaller terms }(\geq 0) \\
& \geq \log _{2}(n / 2)+\log _{2}(n / 2)+\ldots+\log _{2}(n / 2) & \text { shrink terms to } \log _{2}(n / 2) \\
& =(n / 2) \log _{2}(n / 2) & & \text { arithmetic } \\
& =(n / 2)\left(\log _{2} n-\log _{2} 2\right) & & \text { property of logarithms } \\
& =(1 / 2) \log _{2} n-(1 / 2) n & & \text { arithmetic } \\
& "=" \Omega\left(n \log ^{n} n\right) & &
\end{array}
$$

