
CSE373: Data Structure & Algorithms

Lecture 23: Programming Languages

Aaron Bauer
Winter 2014

Choosing a Programming Language

•  Most of the time you won’t have a choice about what
programming language to use
–  Software is already written in a particular language
–  Platform requires a specific language (Objective-C for iOS)
–  Language required by computational tool (Mathematica, etc.)

•  Still important to understand capabilities and limitations of
language

•  When you do get to choose, your choice can have tremendous
impact
–  This is despite theoretical equivalence!
–  Turing Completeness

Winter 2014 2 CSE373: Data Structures & Algorithms

Turing Completeness

•  A programming language is said to be Turing complete if it can
compute every computable function
–  Recall the Halting Problem as a non-computable function

•  In other words, every Turing complete language can
approximately simulate every other Turing complete language

•  Virtually every programming language you might encounter is
Turing complete
–  Data or markup languages (e.g. JSON, XML, HTML) are an

exception
•  So a choice of language is about how computation is described,

not about what it’s possible to compute

Winter 2014 3 CSE373: Data Structures & Algorithms

What we might want from a Language

•  Readable (good syntax, intuitive semantics)
•  High-level of abstraction (but still possible to access low level)
•  Fast
•  Good concurrency and parallelism
•  Portable
•  Manage side effects
•  Expressive
•  Make dumb things hard
•  Secure
•  Provably correct
•  etc.

Winter 2014 4 CSE373: Data Structures & Algorithms

 Type System

•  Collection of rules to assign types to elements of the language
–  Values, variables, functions, etc.

•  The goal is to reduce bugs
–  Logic errors, memory errors (maybe)

•  Governed by type theory, an incredibly deep and complex topic

•  The type safety of a language is the extent to which its type
system prevents or discourages relevant type errors
–  Via type checking

•  We’ll cover the following questions:
–  When does the type system check?
–  What does the type system check?
–  What do we have to tell the type system?

Winter 2014 5 CSE373: Data Structures & Algorithms

When Does It Check?

•  Static type-checking (check at compile-time)
–  Based on source code (program text)
–  If program passes, it’s guaranteed to satisfy some type-

safety properties on all possible inputs
–  Catches bugs early (program doesn’t have to be run)
–  Possibly better run-time performance

•  Less (or no) checking to do while program runs
•  Compiler can optimize based on type

–  Inherently conservative
•  if <complex test> then <do something> else <type error>

–  Not all useful features can be statically checked
•  Many languages use both static and dynamic checking

Winter 2014 6 CSE373: Data Structures & Algorithms

When Does it Check?

•  Dynamic type-checking (check at run-time)
–  Performed as the program is executing
–  Often “tag” objects with their type information
–  Look up type information when performing operations
–  Possibly faster development time

•  edit-compile-test-debug cycle
–  Fewer guarantees about program correctness

Winter 2014 7 CSE373: Data Structures & Algorithms

What Does it Check?

•  Nominal type system (name-based type system)
–  Equivalence of types based on declared type names
–  Objects are only subtypes if explicitly declared so
–  Can be statically or dynamically checked

•  Structural type system (property-based type system)
–  Equivalence of types based on structure/definition
–  An element A is compatible with an element B if for each

feature in B’s type, there’s an identical feature in A’s type
•  Not symmetric, subtyping handled similarly

•  Duck typing
–  Type-checking only based on features actually used
–  Only generates run-time errors

Winter 2014 8 CSE373: Data Structures & Algorithms

How Much do we Have to Tell it?

•  Type Inference
–  Automatically determining the type of an expression
–  Programmer can omit type annotations

•  Instead of (in C++)
std::vector<int>::const_iterator itr = myvec.cbegin()
use (in C++11)
auto itr = myvec.cbegin()

–  Can make programming tasks easier
–  Only happens at compile-time

•  Otherwise, types must be manifest (always written out)

Winter 2014 9 CSE373: Data Structures & Algorithms

How Flexible is it?

•  Type conversion (typecasting)
–  Changing a value from one type to another, potentially

changing the storage requirements
–  Reinterpreting the bit pattern of a value from one type to

another
•  Can happen explicitly or implicitly

•  Can be done safely (checked) or unsafely (unchecked)
•  Objects can be upcast (to supertype) or downcast (to subtype)

Winter 2014 10 CSE373: Data Structures & Algorithms

double da = 3.3
double db = 3.3;
double dc = 3.4;
int result = (int)da + (int)db + (int)dc;
int result = da + db + dc;

What Does it All Mean?

•  Most of these distinctions are not mutually exclusive
–  Languages that do static type-checking often have to do

some dynamic type-checking as well
–  Some languages use a combination of nominal and duck

typing
•  Terminology useful shorthand for describing language

characteristics
•  The terms “strong” or “weak” typing are often applied

–  These lack any formal definition
–  Use more precise, informative descriptors instead

•  Languages aren’t necessarily limited to “official” tools

Winter 2014 11 CSE373: Data Structures & Algorithms

Memory Safety

•  Memory errors
–  Buffer overflow
–  Dynamic
–  Uninitialized variables
–  Out of memory

•  Often closely tied to type safety
•  Can be checked at compile-time or run-time (or not at all)
•  Memory can be managed manually or automatically

–  Garbage collection is a type of automatic management
–  Some languages make use of both

Winter 2014 12 CSE373: Data Structures & Algorithms

Programming Paradigms

•  A programming paradigm describes some fundamental way of
constructing and organizing computer programs
–  A programming language supports one or more paradigms

•  Imperative
–  A program is a series of statements which explicitly change

the program state.
•  Declarative

–  A program describes what should happen without describing
how it happens

•  Functional (can be considered a type of declarative)
–  Computation done by evaluation of functions, avoiding state

and mutable data
•  Object-oriented (as opposed to procedural)

–  Computation done via objects (containing data and methods)
Winter 2014 13 CSE373: Data Structures & Algorithms

Language Development

•  Many attempts to develop a “universal language”
–  have failed due to diverse needs
–  program size, programmer expertise, program requirements,

program evolution, and personal taste
•  Languages often change over time

–  Generics were added to Java 9 years after initial release
–  Take extreme care not to break existing code

•  One “standard,” many implementations
–  Standard defines syntax and semantics

•  Whether a language will become popular is unpredictable
–  Some research suggests things like library availability and

social factors may be more important than language features

Winter 2014 14 CSE373: Data Structures & Algorithms

Java

•  Age: 19 years
•  Developer: Oracle Corporation
•  Paradigms: imperative, object-oriented
•  Type system: static, nominative, manifest
•  One of the most popular languages in use today

–  Lots of great tools and other resources
•  Write Once, Run Anywhere approach (via JVM)

–  Used to be considered slow, improved by JIT optimization
–  Other languages using JVM (Scala, Jython, Clojure, Groovy)

•  Can be quite verbose, lacks a number of nice features
•  Sees lots of use in large-scale enterprise software
•  I would only choose to use Java if given no other options

Winter 2014 15 CSE373: Data Structures & Algorithms

C/C++

•  Age: 42/31 years
•  Developer: International Organization for Standardization
•  Paradigms: imperative, procedural, object-oriented (C++ only)
•  Type system: static, nominative, manifest (C++11 has inference)
•  Two of the most popular languages in use today
•  “Closer to the hardware” than Java

–  Used where predictable resource use is necessary
–  OS, graphics, games, compilers

•  Manual memory management, less protection from memory
errors, sometimes inscrutable compiler errors
–  Generally easier to “do dumb things”

•  I’ve only used C/C++ when doing systems programming or
when a library I needed was in C++

Winter 2014 16 CSE373: Data Structures & Algorithms

Winter 2014 17 CSE373: Data Structures & Algorithms

C#

•  Age: 14 years
•  Developer: Microsoft
•  Paradigms: imperative, object-oriented, functional
•  Type system: static, nominative, partially inferred

–  optionally dynamic
•  Runs on the .NET Framework

–  Provides things like garbage collection (similar to the JVM)
•  Allows access to system functions with unsafe keyword
•  Less verbose than Java, safer than C++
•  Primary use is writing Windows applications
•  I have really enjoyed programming in C#, but Windows-only can

be a big drawback

Winter 2014 18 CSE373: Data Structures & Algorithms

Haskell

•  Age: 24 years
•  Developer: many (research language)
•  Paradigm: pure functional, lazy evaluation
•  Type system: static, inferred
•  Pure functional programming is a different way of thinking

–  maybe liberating, maybe frustrating
•  Functional programming has seen only limited industrial use
•  Safer and more transparent than an imperative language

–  Same function with same args always returns same value
–  Allows for compiler optimizations

•  Performance suffers as hardware better suited to mutable data
•  I think functional programming is fascinating, and enough

languages include functional elements to make it worth learning
Winter 2014 19 CSE373: Data Structures & Algorithms

Haskell examples

Winter 2014 20 CSE373: Data Structures & Algorithms

factorial 0 = 1
factorial n | n > 0 = n * factorial (n - 1)

factorial n = product [1..n]

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++

 (quicksort greater)
 where
 lesser = filter (< p) xs
 greater = filter (>= p) xs

product xs = prod xs 1
 where
 prod [] a = a
 prod (x:xs) a = prod xs (a*x)

SQL (Structured Query Language)
•  Age: 40 years
•  Developer: ISO
•  Paradigms: declarative
•  Type system: static
•  Used as a database query language

–  Declarative paradigm perfect for this application

•  Using SQL is both easy and very powerful
•  If you have a lot of data, definitely consider using free database

software like MySQL
Winter 2014 21 CSE373: Data Structures & Algorithms

Python
•  Age: 23 years
•  Developer: Python Software Foundation
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic, duck
•  Has a Read-Eval-Print-Loop (REPL)

–  Useful for experimenting or one-off tasks
•  Scripting language

–  Supports “scripts,” small programs run without compilation
•  Often used in web development or scientific/numeric computing
•  Variables don’t have types, only values have types
•  Whitespace has semantic meaning
•  Lack of variable types and compile-time checks mean more may

be required of documentation and testing
•  Python is my language of choice for accomplishing small tasks
Winter 2014 22 CSE373: Data Structures & Algorithms

JavaScript
•  Age: 19 years
•  Developer: Mozilla Foundation
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic, duck
•  Also a scripting language (online/browser REPLs exist)
•  Primary client-side language of the web
•  Does inheritance through prototypes rather than classes

–  Objects inherit by cloning the behavior of existing objects
•  Takes a continue at any cost approach

–  Shared by many web-focused languages (PHP, HTML)
–  Things that would be errors in other languages don’t stop

execution, and are allowed to fail silently
•  JavaScript is nice for simple things, immediately running on the

web is great, but doing larger/more complex software is terrible
Winter 2014 23 CSE373: Data Structures & Algorithms

PHP

•  Age: 19 years
•  Developer: The PHP Group
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic
•  Works with Apache (>50% all websites), so very common

server-side language
•  Minimal type system, lots of strange behavior, just awful

–  If two strings are compared with ==, PHP will silently cast
them to numbers (0e45h7 == 0w2318 evaluates to true)

•  I’ve never used it and I never will (hopefully)

Winter 2014 24 CSE373: Data Structures & Algorithms

LOLCODE
•  Age: 7 years
•  An example of an esoteric programming language

Winter 2014 25 CSE373: Data Structures & Algorithms

HAI
 CAN HAS STDIO?
 PLZ OPEN FILE "LOLCATS.TXT"?
 AWSUM THX
 VISIBLE FILE
 O NOES
 INVISIBLE "ERROR!"
 KTHXBYE

HAI
CAN HAS STDIO?
IM IN YR LOOP UPPIN YR VAR TIL BOTH SAEM VAR AN 10
 VISIBLE SUM OF VAR AN 1
IM OUTTA YR LOOP
KTHXBYE

