

CSE373: Data Structures & Algorithms Lecture 5: Dictionaries; Binary Search Trees

Aaron Bauer Winter 2014

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

- 1. Stack: push, pop, isEmpty, ...
- 2. Queue: enqueue, dequeue, isEmpty, ...

Next:

- 3. Dictionary (a.k.a. Map): associate keys with values
 - Extremely common

The Dictionary (a.k.a. Map) ADT

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values

- A key is *present* or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold

- union, intersection, is_subset
- Notice these are binary operators on sets

Dictionary data structures

There are many good data structures for (large) dictionaries

- 1. AVL trees
 - Binary search trees with guaranteed balancing
- 2. B-Trees
 - Also always balanced, but different and shallower
 - B!=Binary; B-Trees generally have large branching factor
- 3. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations...

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

- Lots of programs do that!
- Search: inverted indexes, phone directories, ...
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Biology: genome maps
- ...

Simple implementations

For dictionary with *n* key/value pairs

- insert find delete
- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

Simple implementations

For dictionary with *n* key/value pairs

		insert	find	delete
•	Unsorted linked-list	<i>O</i> (1)*	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
•	Unsorted array	<i>O</i> (1)*	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
•	Sorted linked list	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
•	Sorted array	<i>O</i> (<i>n</i>)	$O(\log n)$	<i>O</i> (<i>n</i>)

 * Unless we need to check for duplicates
 We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Winter 2014

CSE373: Data Structures & Algorithms

Lazy Deletion

10	12	24	30	41	42	44	45	50
\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	√

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra *space* for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find O(log m) time where m is data-structure size (okay)
- May complicate other operations

Tree terms (review?)

root(tree)
leaves(tree)
children(node)
parent(node)
siblings(node)
ancestors(node)
descendents(node)
subtree(node)

depth(node) *height*(tree) *degree*(node) *branching factor*(tree)

Some tree terms (mostly review)

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
 - Every binary search tree is a binary tree
 - Later: A binary heap is a different kind of binary tree
- A tree can be balanced or not
 - A balanced tree with *n* nodes has a height of $O(\log n)$
 - Different tree data structures have different "balance conditions" to achieve this

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children (branching factor 2)
- *n*-ary tree: Each node has at most *n* children (branching factor *n*)
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes? A complete binary tree?

Winter 2014

Binary Trees

- Binary tree is empty or
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)
- Representation:

For a dictionary, data will include a key and a value

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

– max # of leaves:

2^h

- max # of nodes:
- min # of leaves:
- min # of nodes:

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

– max # of leaves:

– max # of nodes:

 $2^{(h+1)}$ - 1

2h

- min # of leaves:
- min # of nodes:

Recall: height of a tree = longest path from root to leaf (count edges)

2h

 $2^{(h+1)} - 1$

For binary tree of height *h*:

– max # of leaves:

– max # of nodes:

– min # of leaves:

- min # of nodes:

Recall: height of a tree = longest path from root to leaf (count edges)

2h

For binary tree of height *h*:

- max # of leaves:
- max # of nodes: $2^{(h+1)} 1$
- min # of leaves:
- min # of nodes: h + 1

For n nodes, we cannot do better than O(log n) height, and we want to avoid O(n) height

CSE373: Data Structures & Algorithms

Calculating height

What is the height of a tree with root **root**?

Calculating height

What is the height of a tree with root **root**?

Running time for tree with *n* nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
- *In-order*: left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
 + * 2 4 5
- *In-order*: left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
 + * 2 4 5
- In-order: left subtree, root, right subtree
 2 * 4 + 5
- Post-order: left subtree, right subtree, root

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
 + * 2 4 5
- In-order: left subtree, root, right subtree
 2 * 4 + 5
- Post-order: left subtree, right subtree, root
 24*5+


```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


= completed node \checkmark = element has been processed

```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```



```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


