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Where we are 

Studying the absolutely essential ADTs of computer science and  
classic data structures for implementing them 
 

ADTs so far: 

1.  Stack:         push, pop, isEmpty, … 
2.  Queue:         enqueue, dequeue, isEmpty, … 

Next: 
 

3.   Dictionary (a.k.a. Map): associate keys with values 
–  Extremely common 
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The Dictionary (a.k.a. Map) ADT 

•  Data: 
–  set of (key, value) pairs 
–  keys must be comparable 

 
•  Operations: 

–  insert(key,value) 
–  find(key) 
–  delete(key) 
–  … 

•  awb 
Aaron 
 Bauer 
 … 

•  ljames 
Lebron 
James 
 … 

•  miley 
Miley 

      Cyrus 
       … 
 

insert(awb, ….) 

find(miley) 
Miley, Cyrus, … 

Will tend to emphasize the keys; 
don’t forget about the stored values 
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Comparison: The Set ADT 

The Set ADT is like a Dictionary without any values 
–  A key is present or not (no repeats) 

 
For find, insert, delete, there is little difference 

–  In dictionary, values are “just along for the ride” 
–  So same data-structure ideas work for dictionaries and sets 

But if your Set ADT has other important operations this may not hold 
–  union, intersection, is_subset 
–  Notice these are binary operators on sets 
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Dictionary data structures 

There are many good data structures for (large) dictionaries 
 

1.  AVL trees 
–  Binary search trees with guaranteed balancing 

2.  B-Trees 
–  Also always balanced, but different and shallower 
–  B!=Binary; B-Trees generally have large branching factor 

3.  Hashtables 
–  Not tree-like at all 

Skipping: Other balanced trees (e.g., red-black, splay) 
 

But first some applications and less efficient implementations… 
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A Modest Few Uses 

Any time you want to store information according to some key and 
be able to retrieve it efficiently 
–  Lots of programs do that! 

 
•  Search:   inverted indexes, phone directories, … 
•  Networks:   router tables 
•  Operating systems:  page tables 
•  Compilers:   symbol tables 
•  Databases:   dictionaries with other nice properties 
•  Biology:   genome maps 
•  … 
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Simple implementations 
For dictionary with n key/value pairs 
 

      insert   find    delete 
•  Unsorted linked-list 

•  Unsorted array  

•  Sorted linked list 
 

•  Sorted array 
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Simple implementations 
For dictionary with n key/value pairs 
 

      insert   find    delete 
•  Unsorted linked-list           O(1)*          O(n)            O(n) 

•  Unsorted array                  O(1)*          O(n)            O(n) 

•  Sorted linked list                O(n)          O(n)            O(n) 
 

•  Sorted array                      O(n)          O(log n)     O(n) 
 
* Unless we need to check for duplicates 
We’ll see a Binary Search Tree (BST) probably does better, but 

not in the worst case unless we keep it balanced 
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Lazy Deletion 

A general technique for making delete as fast as find: 
–  Instead of actually removing the item just mark it deleted 

Plusses: 
–  Simpler 
–  Can do removals later in batches 
–  If re-added soon thereafter, just unmark the deletion 

Minuses: 
–  Extra space for the “is-it-deleted” flag 
–  Data structure full of deleted nodes wastes space 
–   find O(log m) time where m is data-structure size (okay) 
–  May complicate other operations 

Winter 2014 9 CSE373: Data Structures & Algorithms 

10 12 24 30 41 42 44 45 50 
ü û ü ü ü ü û ü ü 



Tree terms (review?) 
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G 

I H 

L J M K N 

Tree T 

root(tree) 
leaves(tree) 
children(node) 
parent(node) 
siblings(node) 
ancestors(node) 
descendents(node) 
subtree(node) 

depth(node) 
height(tree) 
degree(node) 
branching factor(tree) 



Some tree terms (mostly review) 

•  There are many kinds of trees 
–  Every binary tree is a tree 
–  Every list is kind of a tree (think of “next” as the one child) 

•  There are many kinds of binary trees 
–  Every binary search tree is a binary tree 
–  Later: A binary heap is a different kind of binary tree 

•  A tree can be balanced or not 
–  A balanced tree with n nodes has a height of O(log n)  
–  Different tree data structures have different “balance 

conditions” to achieve this 
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Kinds of trees 

Certain terms define trees with specific structure 
 

•  Binary tree:  Each node has at most 2 children (branching factor 2) 
•  n-ary tree:    Each node has at most n children (branching factor n) 
•  Perfect tree: Each row completely full 
•  Complete tree:  Each row completely full except maybe the bottom 

row, which is filled from left to right 
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What is the height of a perfect binary tree with n nodes?   
A complete binary tree? 



Binary Trees 

•  Binary tree is empty or 
–  A root (with data) 
–  A left subtree (may be empty)  
–  A right subtree (may be empty)  

•  Representation: 

A 

B 

D E 

C 

F 

H G 

J I 

Data 
right  

pointer 
left 

pointer 

•  For a dictionary, data will include a 
key and a value 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

–  max # of leaves:  

–  max # of nodes: 

–  min # of leaves: 

–  min # of nodes: 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

–  max # of leaves:  

–  max # of nodes: 

–  min # of leaves: 

–  min # of nodes: 
 

2h 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

–  max # of leaves:  

–  max # of nodes: 

–  min # of leaves: 

–  min # of nodes: 
 

2h 

2(h + 1) - 1 

Winter 2014 16 CSE373: Data Structures & Algorithms 



Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

–  max # of leaves:  

–  max # of nodes: 

–  min # of leaves: 

–  min # of nodes: 
 

2h 

2(h + 1) - 1 

1 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

–  max # of leaves:  

–  max # of nodes: 

–  min # of leaves: 

–  min # of nodes: 
 

2h 

2(h + 1) - 1 

1 

h + 1 

For n nodes, we cannot do better than O(log n) height,  
and we want to avoid O(n) height 

Winter 2014 18 CSE373: Data Structures & Algorithms 



Calculating height 

What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
 
   ??? 

 
 
} 



Calculating height 
What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
  if(root == null) 
    return -1; 
  return 1 + max(treeHeight(root.left), 
                 treeHeight(root.right)); 
} 

Running time for tree with n nodes: O(n) – single pass over tree 
 

Note: non-recursive is painful – need your own stack of pending 
nodes; much easier to use recursion’s call stack 



Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
•  Pre-order:  root, left subtree, right subtree 

•  In-order:  left subtree, root, right subtree 

•  Post-order:  left subtree, right subtree, root 

+ 

* 

2 4 

5 

(an expression tree) 
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Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
•  Pre-order:  root, left subtree, right subtree 

 + * 2 4 5 

•  In-order:  left subtree, root, right subtree 
  

•  Post-order:  left subtree, right subtree, root 
  

+ 

* 

2 4 

5 

(an expression tree) 
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Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
•  Pre-order:  root, left subtree, right subtree 

 + * 2 4 5 

•  In-order:  left subtree, root, right subtree 
 2 * 4 + 5 

•  Post-order:  left subtree, right subtree, root 
  

+ 

* 

2 4 

5 

(an expression tree) 
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Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
•  Pre-order:  root, left subtree, right subtree 

 + * 2 4 5 

•  In-order:  left subtree, root, right subtree 
 2 * 4 + 5 

•  Post-order:  left subtree, right subtree, root 
 2 4 * 5 + 

+ 

* 

2 4 

5 

(an expression tree) 
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More on  traversals 

void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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    = current node  = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓
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