
CSE373: Data Structures & Algorithms

Lecture 5: Dictionaries; Binary Search Trees

Aaron Bauer
Winter 2014

Where we are

Studying the absolutely essential ADTs of computer science and
classic data structures for implementing them

ADTs so far:

1.  Stack: push, pop, isEmpty, …
2.  Queue: enqueue, dequeue, isEmpty, …

Next:

3. Dictionary (a.k.a. Map): associate keys with values
–  Extremely common

Winter 2014 2 CSE373: Data Structures & Algorithms

The Dictionary (a.k.a. Map) ADT

•  Data:
–  set of (key, value) pairs
–  keys must be comparable

•  Operations:

–  insert(key,value)
–  find(key)
–  delete(key)
–  …

•  awb
Aaron
 Bauer
 …

•  ljames
Lebron
James
 …

•  miley
Miley

 Cyrus
 …

insert(awb, ….)

find(miley)
Miley, Cyrus, …

Will tend to emphasize the keys;
don’t forget about the stored values

Winter 2014 3 CSE373: Data Structures & Algorithms

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
–  A key is present or not (no repeats)

For find, insert, delete, there is little difference

–  In dictionary, values are “just along for the ride”
–  So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold
–  union, intersection, is_subset
–  Notice these are binary operators on sets

Winter 2014 4 CSE373: Data Structures & Algorithms

Dictionary data structures

There are many good data structures for (large) dictionaries

1.  AVL trees
–  Binary search trees with guaranteed balancing

2.  B-Trees
–  Also always balanced, but different and shallower
–  B!=Binary; B-Trees generally have large branching factor

3.  Hashtables
–  Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations…

Winter 2014 5 CSE373: Data Structures & Algorithms

A Modest Few Uses

Any time you want to store information according to some key and
be able to retrieve it efficiently
–  Lots of programs do that!

•  Search: inverted indexes, phone directories, …
•  Networks: router tables
•  Operating systems: page tables
•  Compilers: symbol tables
•  Databases: dictionaries with other nice properties
•  Biology: genome maps
•  …

Winter 2014 6 CSE373: Data Structures & Algorithms

Simple implementations
For dictionary with n key/value pairs

 insert find delete
•  Unsorted linked-list

•  Unsorted array

•  Sorted linked list

•  Sorted array

Winter 2014 7 CSE373: Data Structures & Algorithms

Simple implementations
For dictionary with n key/value pairs

 insert find delete
•  Unsorted linked-list O(1)* O(n) O(n)

•  Unsorted array O(1)* O(n) O(n)

•  Sorted linked list O(n) O(n) O(n)

•  Sorted array O(n) O(log n) O(n)

* Unless we need to check for duplicates
We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

Winter 2014 8 CSE373: Data Structures & Algorithms

Lazy Deletion

A general technique for making delete as fast as find:
–  Instead of actually removing the item just mark it deleted

Plusses:
–  Simpler
–  Can do removals later in batches
–  If re-added soon thereafter, just unmark the deletion

Minuses:
–  Extra space for the “is-it-deleted” flag
–  Data structure full of deleted nodes wastes space
–  find O(log m) time where m is data-structure size (okay)
–  May complicate other operations

Winter 2014 9 CSE373: Data Structures & Algorithms

10 12 24 30 41 42 44 45 50
ü û ü ü ü ü û ü ü

Tree terms (review?)

Winter 2014 10 CSE373: Data Structures & Algorithms

A

E

B

D F

C

G

I H

L J M K N

Tree T

root(tree)
leaves(tree)
children(node)
parent(node)
siblings(node)
ancestors(node)
descendents(node)
subtree(node)

depth(node)
height(tree)
degree(node)
branching factor(tree)

Some tree terms (mostly review)

•  There are many kinds of trees
–  Every binary tree is a tree
–  Every list is kind of a tree (think of “next” as the one child)

•  There are many kinds of binary trees
–  Every binary search tree is a binary tree
–  Later: A binary heap is a different kind of binary tree

•  A tree can be balanced or not
–  A balanced tree with n nodes has a height of O(log n)
–  Different tree data structures have different “balance

conditions” to achieve this

Winter 2014 11 CSE373: Data Structures & Algorithms

Kinds of trees

Certain terms define trees with specific structure

•  Binary tree: Each node has at most 2 children (branching factor 2)
•  n-ary tree: Each node has at most n children (branching factor n)
•  Perfect tree: Each row completely full
•  Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Winter 2014 12 CSE373: Data Structures & Algorithms

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

Binary Trees

•  Binary tree is empty or
–  A root (with data)
–  A left subtree (may be empty)
–  A right subtree (may be empty)

•  Representation:

A

B

D E

C

F

H G

J I

Data
right

pointer
left

pointer

•  For a dictionary, data will include a
key and a value

Winter 2014 13 CSE373: Data Structures & Algorithms

CSE373: Data Structures & Algorithms 14

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of leaves:

–  max # of nodes:

–  min # of leaves:

–  min # of nodes:

Winter 2014

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of leaves:

–  max # of nodes:

–  min # of leaves:

–  min # of nodes:

2h

Winter 2014 15 CSE373: Data Structures & Algorithms

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of leaves:

–  max # of nodes:

–  min # of leaves:

–  min # of nodes:

2h

2(h + 1) - 1

Winter 2014 16 CSE373: Data Structures & Algorithms

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of leaves:

–  max # of nodes:

–  min # of leaves:

–  min # of nodes:

2h

2(h + 1) - 1

1

Winter 2014 17 CSE373: Data Structures & Algorithms

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of leaves:

–  max # of nodes:

–  min # of leaves:

–  min # of nodes:

2h

2(h + 1) - 1

1

h + 1

For n nodes, we cannot do better than O(log n) height,
and we want to avoid O(n) height

Winter 2014 18 CSE373: Data Structures & Algorithms

Calculating height

What is the height of a tree with root root?

Winter 2014 19 CSE373: Data Structures & Algorithms

int treeHeight(Node root) {

 ???

}

Calculating height
What is the height of a tree with root root?

Winter 2014 20 CSE373: Data Structures & Algorithms

int treeHeight(Node root) {
 if(root == null)
 return -1;
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending
nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

•  In-order: left subtree, root, right subtree

•  Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Winter 2014 21 CSE373: Data Structures & Algorithms

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

 + * 2 4 5

•  In-order: left subtree, root, right subtree

•  Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Winter 2014 22 CSE373: Data Structures & Algorithms

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

 + * 2 4 5

•  In-order: left subtree, root, right subtree
 2 * 4 + 5

•  Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Winter 2014 23 CSE373: Data Structures & Algorithms

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

 + * 2 4 5

•  In-order: left subtree, root, right subtree
 2 * 4 + 5

•  Post-order: left subtree, right subtree, root
 2 4 * 5 +

+

*

2 4

5

(an expression tree)

Winter 2014 24 CSE373: Data Structures & Algorithms

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 25 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 26 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 27 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 28 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 29 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 30 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 31 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 32 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 33 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Winter 2014 34 CSE373: Data Structures & Algorithms

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓ ✓

