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Announcements	  

•  HW2	  out,	  due	  beginning	  of	  class	  Wednesday	  
•  Two	  TA	  sessions	  next	  week	  

– Asympto>c	  analysis	  on	  Tuesday	  
– AVL	  Trees	  on	  Thursday	  

•  MLK	  day	  Monday	  
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Previously	  on	  CSE	  373	  

•  Dic>onary	  ADT	  
– stores	  (key,	  value)	  pairs	  
– find,	  insert,	  delete 

•  Trees	  
–  terminology	  
–  traversals	  
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More on  traversals 

void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

Sometimes order doesn’t matter 
•  Example: sum all elements 

Sometimes order matters 
•  Example: print tree with parent above  

 indented children (pre-order) 
•  Example: evaluate an expression tree 

(post-order) 
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Binary Search Tree 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

•  Structure property (“binary”) 
–  Each node has ≤ 2 children 
–  Result: keeps operations simple 

 

•  Order property 
–  All keys in left subtree smaller 

than node’s key 
–  All keys in right subtree larger 

than node’s key 
–  Result: easy to find any given key 
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Are these BSTs? 
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Find in BST, Recursive 
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Data find(Key key, Node root){ 
 if(root == null) 
   return null; 
 if(key < root.key) 
   return find(key,root.left); 
 if(key > root.key) 
   return find(key,root.right); 
 return root.data; 
} 
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Find in BST, Iterative 
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Data find(Key key, Node root){ 
 while(root != null  
       && root.key != key) { 
  if(key < root.key) 
    root = root.left; 
  else(key > root.key) 
    root = root.right; 
 } 
 if(root == null) 
    return null; 
 return root.data; 
} 
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Other “Finding” Operations 

•  Find minimum node 
–  “the liberal algorithm” 

•  Find maximum node 
–  “the conservative algorithm” 

•  Find predecessor 
•  Find successor 
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Insert in BST 
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insert(13) 
insert(8) 
insert(31) 

(New) insertions happen 
only at leaves – easy! 10 

8 31 

13 
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Deletion in BST 
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Why might deletion be harder than insertion? 

10 
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Deletion 
•  Removing an item disrupts the tree structure 

•  Basic idea: find the node to be removed, then  
“fix” the tree so that it is still a binary search tree 

•  Three cases: 
–  Node has no children (leaf) 
–  Node has one child 
–  Node has two children 
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Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 
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Deletion – The One Child Case 
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Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we replace 5 with? 
 
 

10 
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Deletion – The Two Child Case 

Idea: Replace the deleted node with a value guaranteed to be 
between the two child subtrees 

 
Options: 
•  successor    from right subtree: findMin(node.right) 
•  predecessor   from left subtree:   findMax(node.left) 

–  These are the easy cases of predecessor/successor 
 
Now delete the original node containing successor or predecessor 
•  Leaf or one child case – easy cases of delete! 
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Lazy Deletion 

•  Lazy deletion can work well for a BST 
–  Simpler 
–  Can do “real deletions” later as a batch 
–  Some inserts can just “undelete” a tree node 

•  But 
–  Can waste space and slow down find operations 
–  Make some operations more complicated: 

•  How would you change findMin and findMax? 
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BuildTree for BST 
•  Let’s consider buildTree 

–  Insert all, starting from an empty tree 

•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

–  If inserted in given order,  
what is the tree?   
 

–  What big-O runtime for  
this kind of sorted input? 

–  Is inserting in the reverse order  
 any better? 

 

1 

2 

3 

O(n2) 
Not a happy place 
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BuildTree for BST 
•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

•  What we if could somehow re-arrange them 
–  median first, then left median, right median, etc. 
–  5, 3, 7, 2, 1, 4, 8, 6, 9   

–  What tree does that give us?  
 

–  What big-O runtime? 
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O(n log n), definitely better 
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Unbalanced BST 

•  Balancing a tree at build time is insufficient, as sequences of 
operations can eventually transform that carefully balanced tree 
into the dreaded list 

•  At that point, everything is 
O(n) and nobody is happy 
–  find 
–  insert 
–  delete 

1 

2 

3 
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Balanced BST 

Observation 
•  BST: the shallower the better! 
•  For a BST with n nodes inserted in arbitrary order 

–  Average height is O(log n) – see text for proof 
–  Worst case height is O(n) 

•  Simple cases, such as inserting in key order, lead to 
 the worst-case scenario 

Solution:  Require a Balance Condition that 
1.  Ensures depth is always O(log n)     – strong enough! 
2.  Is efficient to maintain              – not too strong! 
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Potential Balance Conditions 
1.  Left and right subtrees of the root 

have equal number of nodes 

2.  Left and right subtrees of the root 
have equal height 

Too weak! 
Height mismatch example: 

Too weak! 
Double chain example: 
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Potential Balance Conditions 
3.  Left and right subtrees of every node 

have equal number of nodes 

4.  Left and right subtrees of every node 
have equal height 

Too strong! 
Only perfect trees (2n – 1 nodes) 

Too strong! 
Only perfect trees (2n – 1 nodes) 
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The AVL Balance Condition 
Left and right subtrees of every node 
have heights differing by at most 1 
 
Definition:  balance(node) = height(node.left) – height(node.right) 
 
AVL property:   for every node x,   –1 ≤ balance(x) ≤ 1    

•  Ensures small depth 
–  Will prove this by showing that an AVL tree of height 

h must have a number of nodes exponential in h 

•  Efficient to maintain 
–  Using single and double rotations 
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The AVL Tree Data Structure 
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Structural properties 
1.  Binary tree property 
2.  Balance property: 

balance of every node is 
between -1 and 1 

Result: 
Worst-case depth is 

O(log n)  
 

Ordering property 
–  Same as for BST 

15 
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The shallowness bound 

Let S(h) = the minimum number of nodes in an AVL tree of height h 
–  If we can prove that S(h) grows exponentially in h, then a tree 

with n nodes has a logarithmic height 

•  Step 1: Define S(h) inductively using AVL property 
–  S(-1)=0, S(0)=1, S(1)=2 
–  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

•  Step 2: Show this recurrence grows really fast 
–  Can prove for all h,  S(h) > φh – 1 where 

 φ is the golden ratio, (1+√5)/2, about 1.62 
–  Growing faster than 1.6h is “plenty exponential” 

•  It does not grow faster than 2h 

h-1 h-2 

h 
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Before we prove it 

•  Good intuition from plots comparing: 
–  S(h) computed directly from the definition 
–  ((1+√5)/2) h 

•  S(h) is always bigger, up to trees with huge numbers of nodes 
–  Graphs aren’t proofs, so let’s prove it 
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The Golden Ratio 

62.1
2
51
≈

+
=φ

This is a special number 

•  Aside: Since the Renaissance, many artists and architects have 
proportioned their work (e.g., length:height) to approximate the 
golden ratio: If (a+b)/a = a/b, then a = φb 

•  We will need one special arithmetic fact about φ : 
            φ2      = ((1+51/2)/2)2   

  = (1 + 2*51/2 + 5)/4  
  = (6 + 2*51/2)/4  
 = (3 + 51/2)/2  
  = 1 + (1 + 51/2)/2 
  = 1 + φ 
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The proof 

Theorem: For all h ≥ 0, S(h) > φh – 1  
Proof: By induction on h 
Base cases: 

S(0) = 1 > φ0 – 1 = 0   S(1) = 2 > φ1 – 1 ≈ 0.62 
Inductive case (k > 1):  

 Show S(k+1) > φk+1 – 1 assuming S(k) > φk – 1 and S(k-1) > φk-1 – 1 
 

 S(k+1) = 1 + S(k) + S(k-1)  by definition of S 
      > 1 + φk – 1 + φk-1 – 1 by induction 

                 = φk + φk-1 – 1              by arithmetic (1-1=0) 
                 = φk-1 (φ + 1) – 1  by arithmetic (factor φk-1 ) 

             = φk-1 φ2 – 1                 by special property of φ 
                 = φk+1 – 1                    by arithmetic (add exponents) 
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S(-1)=0, S(0)=1, S(1)=2 
For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

 



Good news 

Proof means that if we have an AVL tree, then find is O(log n) 
–  Recall logarithms of different bases > 1 differ by only a 

constant factor 
 

But as we insert and delete elements, we need to: 
1.  Track balance 
2.  Detect imbalance 
3.  Restore balance 
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Is this AVL tree balanced? 
How about after insert(30)? 
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An AVL Tree 
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Track height at all times! 

10  key  

Winter 2014 CSE373: Data Structures & Algorithms 34 



AVL tree operations 
•  AVL find:  

–  Same as BST find 

•  AVL insert:  
–  First BST insert, then check balance and potentially “fix” 

the AVL tree 
–  Four different imbalance cases 

•  AVL delete:  
–  The “easy way” is lazy deletion 
–  Otherwise, do the deletion and then have several imbalance 

cases (we will likely skip this but post slides for those 
interested) 
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