CSE373: Data Structures \& Algorithms
Lecture 6: Binary Search Trees continued

Aaron Bauer
Winter 2014

Announcements

- HW2 out, due beginning of class Wednesday
- Two TA sessions next week
- Asymptotic analysis on Tuesday
- AVL Trees on Thursday
- MLK day Monday

Previously on CSE 373

- Dictionary ADT
- stores (key, value) pairs
- find, insert, delete
- Trees
- terminology
- traversals

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
    }
}
```

Sometimes order doesn't matter

- Example: sum all elements

Sometimes order matters

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

D

E

C
F
G

Binary Search Tree

- Structure property ("binary")
- Each node has ≤ 2 children
- Result: keeps operations simple
- Order property
- All keys in left subtree smaller than node's key
- All keys in right subtree larger than node's key
- Result: easy to find any given key

Are these BSTs?

Are these BSTs?

Find in BST, Recursive


```
Data find(Key key, Node root) {
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
        if(key > root.key)
            return find(key,root.right);
        return root.data;
}
```


Find in BST, Iterative


```
Data find(Key key, Node root){
    while(root != null
            && root.key != key) {
        if(key < root.key)
        root = root.left;
        else(key > root.key)
            root = root.right;
    }
    if(root == null)
        return null;
    return root.data;
}
```


Other "Finding" Operations

- Find minimum node
- "the liberal algorithm"
- Find maximum node
- "the conservative algorithm"
- Find predecessor
- Find successor

Insert in BST

insert(13)
 insert(8)
 insert(31)

(New) insertions happen only at leaves - easy!

Deletion in BST

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure
- Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three cases:
- Node has no children (leaf)
- Node has one child
- Node has two children

Deletion - The Leaf Case

delete(17)

Deletion - The One Child Case

delete(15)

Deletion - The Two Child Case

What can we replace 5 with?

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!

Lazy Deletion

- Lazy deletion can work well for a BST
- Simpler
- Can do "real deletions" later as a batch
- Some inserts can just "undelete" a tree node
- But
- Can waste space and slow down find operations
- Make some operations more complicated:
- How would you change findMin and findMax?

Build Tree for BST

- Let's consider buildTree
- Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?

$$
O\left(n^{2}\right)
$$

Not a happy place

- Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
$-5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?

O($n \log n$), definitely better

Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is $O(n)$ and nobody is happy
- find
- insert
- delete

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
- Average height is $O(\log n)$ - see text for proof
- Worst case height is $O(n)$
- Simple cases, such as inserting in key order, lead to the worst-case scenario

Solution: Require a Balance Condition that

1. Ensures depth is always $O(\log n) \quad-$ strong enough!
2. Is efficient to maintain

- not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
Too weak!
Height mismatch example:
2. Left and right subtrees of the root have equal height

Too weak!
Double chain example:

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
Too strong!
Only perfect trees (2n 1 nodes)

4. Left and right subtrees of every node have equal height
```
Too strong!
Only perfect trees ( \(2^{n}-1\) nodes)
```


The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) $=$ height(node.left) - height(node.right)

AVL property: for every node $x,-1 \leq$ balance $(x) \leq 1$

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Efficient to maintain
- Using single and double rotations

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1
Result:
Worst-case depth is O(log n)

Ordering property

- Same as for BST

An AVL tree?

An AVL tree?

The shallowness bound

Let $S(h)=$ the minimum number of nodes in an AVL tree of height h

- If we can prove that $S(h)$ grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define $S(h)$ inductively using AVL property
$-S(-1)=0, S(0)=1, S(1)=2$
- For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$
- Step 2: Show this recurrence grows really fast

- Can prove for all $h, S(h)>\phi^{h}-1$ where ϕ is the golden ratio, $(1+\sqrt{ } 5) / 2$, about 1.62
- Growing faster than 1.6^{h} is "plenty exponential"
- It does not grow faster than 2^{h}

Before we prove it

- Good intuition from plots comparing:
- $S(h)$ computed directly from the definition
- $((1+\sqrt{ } 5) / 2)^{h}$
- $S(h)$ is always bigger, up to trees with huge numbers of nodes
- Graphs aren't proofs, so let's prove it

The Golden Ratio

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

$a+b$ is to a as a is to b

This is a special number

- Aside: Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio: If $(\mathrm{a}+\mathrm{b}) / \mathrm{a}=\mathrm{a} / \mathrm{b}$, then $\mathrm{a}=\phi \mathrm{b}$
- We will need one special arithmetic fact about ϕ :

$$
\begin{aligned}
\phi^{2} & =\left(\left(1+5^{1 / 2}\right) / 2\right)^{2} \\
& =\left(1+2 * 5^{1 / 2}+5\right) / 4 \\
& =\left(6+2 * 5^{1 / 2}\right) / 4 \\
& =\left(3+5^{1 / 2}\right) / 2 \\
& =1+\left(1+5^{1 / 2}\right) / 2 \\
& =1+\phi
\end{aligned}
$$

The proof

$S(-1)=0, S(0)=1, S(1)=2$
For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$

Theorem: For all $h \geq 0, S(h)>\phi^{h}-1$
Proof: By induction on h
Base cases:

$$
S(0)=1>\phi^{0}-1=0 \quad S(1)=2>\phi^{1}-1 \approx 0.62
$$

Inductive case ($k>1$):
Show $S(k+1)>\phi^{k+1}-1$ assuming $S(k)>\phi^{k}-1$ and $S(k-1)>\phi^{k-1}-1$
$S(k+1)=1+S(k)+S(k-1) \quad$ by definition of S
$>1+\phi^{k}-1+\phi^{k-1}-1$ by induction
$=\phi^{k}+\phi^{k-1}-1 \quad$ by arithmetic $(1-1=0)$
$=\phi^{k-1}(\phi+1)-1 \quad$ by arithmetic (factor $\left.\phi^{k-1}\right)$
$=\phi^{k-1} \phi^{2}-1 \quad$ by special property of ϕ
$=\phi^{k+1}-1 \quad$ by arithmetic (add exponents)

Good news

Proof means that if we have an AVL tree, then find is $O(\log n)$

- Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:

1. Track balance
2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after insert (30)?

An AVL Tree

Track height at all times!

AVL tree operations

- AVL find:
- Same as BST find
- AVL insert:
- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases
- AVL delete:
- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (we will likely skip this but post slides for those interested)

