
CSE373:	 Data	 Structures	 &	 Algorithms	
	

Lecture	 6:	 Binary	 Search	 Trees	 con>nued	

Aaron	 Bauer	
Winter	 2014	

Winter	 2014	 CSE373:	 Data	 Structures	 &	 Algorithms	 1	

Announcements	

•  HW2	 out,	 due	 beginning	 of	 class	 Wednesday	
•  Two	 TA	 sessions	 next	 week	

– Asympto>c	 analysis	 on	 Tuesday	
– AVL	 Trees	 on	 Thursday	

•  MLK	 day	 Monday	

Winter	 2014	 CSE373:	 Data	 Structures	 &	 Algorithms	 2	

Previously	 on	 CSE	 373	

•  Dic>onary	 ADT	
– stores	 (key,	 value)	 pairs	
– find,	 insert,	 delete

•  Trees	
–  terminology	
–  traversals	

Winter	 2014	 CSE373:	 Data	 Structures	 &	 Algorithms	 3	

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

Sometimes order doesn’t matter
•  Example: sum all elements

Sometimes order matters
•  Example: print tree with parent above

 indented children (pre-order)
•  Example: evaluate an expression tree

(post-order)

A
 B
 D
 E
 C

 F
 G

A

B

D E

C

F G

Winter 2014 4 CSE373: Data Structures & Algorithms

A

B

D E

C

F G

✓

✓ ✓

✓

✓

✓ ✓

Binary Search Tree

4

12 10 6 2

11 5

8

14

13

7 9

•  Structure property (“binary”)
–  Each node has ≤ 2 children
–  Result: keeps operations simple

•  Order property
–  All keys in left subtree smaller

than node’s key
–  All keys in right subtree larger

than node’s key
–  Result: easy to find any given key

Winter 2014 5 CSE373: Data Structures & Algorithms

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Winter 2014 6 CSE373: Data Structures & Algorithms

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Winter 2014 7 CSE373: Data Structures & Algorithms

Find in BST, Recursive

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

Winter 2014 8 CSE373: Data Structures & Algorithms

Find in BST, Iterative

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 while(root != null
 && root.key != key) {
 if(key < root.key)
 root = root.left;
 else(key > root.key)
 root = root.right;
 }
 if(root == null)
 return null;
 return root.data;
}

Winter 2014 9 CSE373: Data Structures & Algorithms

Other “Finding” Operations

•  Find minimum node
–  “the liberal algorithm”

•  Find maximum node
–  “the conservative algorithm”

•  Find predecessor
•  Find successor

20 9 2

15 5

12

30 7 17 10

Winter 2014 10 CSE373: Data Structures & Algorithms

Insert in BST

20 9 2

15 5

12

30 7 17

insert(13)
insert(8)
insert(31)

(New) insertions happen
only at leaves – easy! 10

8 31

13

Winter 2014 11 CSE373: Data Structures & Algorithms

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

Winter 2014 12 CSE373: Data Structures & Algorithms

Deletion
•  Removing an item disrupts the tree structure

•  Basic idea: find the node to be removed, then
“fix” the tree so that it is still a binary search tree

•  Three cases:
–  Node has no children (leaf)
–  Node has one child
–  Node has two children

Winter 2014 13 CSE373: Data Structures & Algorithms

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

Winter 2014 14 CSE373: Data Structures & Algorithms

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

Winter 2014 15 CSE373: Data Structures & Algorithms

delete(15)

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we replace 5 with?

10

Winter 2014 16 CSE373: Data Structures & Algorithms

delete(5)

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
•  successor from right subtree: findMin(node.right)
•  predecessor from left subtree: findMax(node.left)

–  These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
•  Leaf or one child case – easy cases of delete!

Winter 2014 17 CSE373: Data Structures & Algorithms

Lazy Deletion

•  Lazy deletion can work well for a BST
–  Simpler
–  Can do “real deletions” later as a batch
–  Some inserts can just “undelete” a tree node

•  But
–  Can waste space and slow down find operations
–  Make some operations more complicated:

•  How would you change findMin and findMax?

Winter 2014 18 CSE373: Data Structures & Algorithms

BuildTree for BST
•  Let’s consider buildTree

–  Insert all, starting from an empty tree

•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

–  If inserted in given order,
what is the tree?

–  What big-O runtime for
this kind of sorted input?

–  Is inserting in the reverse order
 any better?

1

2

3

O(n2)
Not a happy place

Winter 2014 19 CSE373: Data Structures & Algorithms

BuildTree for BST
•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

•  What we if could somehow re-arrange them
–  median first, then left median, right median, etc.
–  5, 3, 7, 2, 1, 4, 8, 6, 9

–  What tree does that give us?

–  What big-O runtime?

8 4 2

7 3

5

9

6

1

O(n log n), definitely better

Winter 2014 20 CSE373: Data Structures & Algorithms

Unbalanced BST

•  Balancing a tree at build time is insufficient, as sequences of
operations can eventually transform that carefully balanced tree
into the dreaded list

•  At that point, everything is
O(n) and nobody is happy
–  find
–  insert
–  delete

1

2

3

Winter 2014 21 CSE373: Data Structures & Algorithms

Balanced BST

Observation
•  BST: the shallower the better!
•  For a BST with n nodes inserted in arbitrary order

–  Average height is O(log n) – see text for proof
–  Worst case height is O(n)

•  Simple cases, such as inserting in key order, lead to
 the worst-case scenario

Solution: Require a Balance Condition that
1.  Ensures depth is always O(log n) – strong enough!
2.  Is efficient to maintain – not too strong!

Winter 2014 22 CSE373: Data Structures & Algorithms

Potential Balance Conditions
1.  Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

Winter 2014 23 CSE373: Data Structures & Algorithms

Potential Balance Conditions
3.  Left and right subtrees of every node

have equal number of nodes

4.  Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

Winter 2014 24 CSE373: Data Structures & Algorithms

25

The AVL Balance Condition
Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 ≤ balance(x) ≤ 1

•  Ensures small depth
–  Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

•  Efficient to maintain
–  Using single and double rotations

Winter 2014 CSE373: Data Structures & Algorithms

26

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties
1.  Binary tree property
2.  Balance property:

balance of every node is
between -1 and 1

Result:
Worst-case depth is

O(log n)

Ordering property
–  Same as for BST

15

Winter 2014 CSE373: Data Structures & Algorithms

11 1

8 4

6

10 12

7 0

0 0

0

1

1

2

3

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms 27

3

11 7 1

8 4

6

2

5

0

0 0 0

1

1

2

3

4

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms 28

29

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h
–  If we can prove that S(h) grows exponentially in h, then a tree

with n nodes has a logarithmic height

•  Step 1: Define S(h) inductively using AVL property
–  S(-1)=0, S(0)=1, S(1)=2
–  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

•  Step 2: Show this recurrence grows really fast
–  Can prove for all h, S(h) > φh – 1 where

 φ is the golden ratio, (1+√5)/2, about 1.62
–  Growing faster than 1.6h is “plenty exponential”

•  It does not grow faster than 2h

h-1 h-2

h

Winter 2014 CSE373: Data Structures & Algorithms

Before we prove it

•  Good intuition from plots comparing:
–  S(h) computed directly from the definition
–  ((1+√5)/2) h

•  S(h) is always bigger, up to trees with huge numbers of nodes
–  Graphs aren’t proofs, so let’s prove it

Winter 2014 30 CSE373: Data Structures & Algorithms

31

The Golden Ratio

62.1
2
51
≈

+
=φ

This is a special number

•  Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the
golden ratio: If (a+b)/a = a/b, then a = φb

•  We will need one special arithmetic fact about φ :
 φ2 = ((1+51/2)/2)2

 = (1 + 2*51/2 + 5)/4
 = (6 + 2*51/2)/4
 = (3 + 51/2)/2
 = 1 + (1 + 51/2)/2
 = 1 + φ

Winter 2014 CSE373: Data Structures & Algorithms

The proof

Theorem: For all h ≥ 0, S(h) > φh – 1
Proof: By induction on h
Base cases:

S(0) = 1 > φ0 – 1 = 0 S(1) = 2 > φ1 – 1 ≈ 0.62
Inductive case (k > 1):

 Show S(k+1) > φk+1 – 1 assuming S(k) > φk – 1 and S(k-1) > φk-1 – 1

 S(k+1) = 1 + S(k) + S(k-1) by definition of S
 > 1 + φk – 1 + φk-1 – 1 by induction

 = φk + φk-1 – 1 by arithmetic (1-1=0)
 = φk-1 (φ + 1) – 1 by arithmetic (factor φk-1)

 = φk-1 φ2 – 1 by special property of φ
 = φk+1 – 1 by arithmetic (add exponents)

Winter 2014 32 CSE373: Data Structures & Algorithms

S(-1)=0, S(0)=1, S(1)=2
For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

Good news

Proof means that if we have an AVL tree, then find is O(log n)
–  Recall logarithms of different bases > 1 differ by only a

constant factor

But as we insert and delete elements, we need to:
1.  Track balance
2.  Detect imbalance
3.  Restore balance

Winter 2014 33 CSE373: Data Structures & Algorithms

Is this AVL tree balanced?
How about after insert(30)?

9 2

5

10

7

15

20

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …

3

value

height

children

Track height at all times!

10 key

Winter 2014 CSE373: Data Structures & Algorithms 34

AVL tree operations
•  AVL find:

–  Same as BST find

•  AVL insert:
–  First BST insert, then check balance and potentially “fix”

the AVL tree
–  Four different imbalance cases

•  AVL delete:
–  The “easy way” is lazy deletion
–  Otherwise, do the deletion and then have several imbalance

cases (we will likely skip this but post slides for those
interested)

Winter 2014 CSE373: Data Structures & Algorithms 35

