CSE373: Data Structures & Algorithms

Lecture 6: Binary Search Trees continued

Aaron Bauer
Winter 2014

Winter 2014 CSE373: Data Structures & Algorithms

Announcements

* HW2 out, due beginning of class Wednesday

e Two TA sessions next week

— Asymptotic analysis on Tuesday
— AVL Trees on Thursday

* MLK day Monday

Previously on CSE 373

* Dictionary ADT

— stores (key, value) pairs

— find, insert, delete
* Trees

— terminology
— traversals

More on traversals

void inOrderTraversal (Node t) {
if(t '= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

}
}

Sometimes order doesn’t matter
« Example: sum all elements
Sometimes order matters
« Example: print tree with parent above
indented children (pre-order)

 Example: evaluate an expression tree
(post-order)

Winter 2014 CSE373: Data Structures & Algorithms

Binary Search Tree

« Structure property (“binary”)
— Each node has < 2 children
— Result: keeps operations simple

* QOrder property

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger
than node’s key

Winter 2014 CSE373: Data Structures & Algorithms 5

Are these BSTs?

Winter 2014 CSE373: Data Structures & Algorithms 6

Are these BSTs?

Winter 2014 CSE373: Data Structures & Algorithms 7

Find in BST, Recursive

Data find (Key key, Node root) {

if (root == null)

return null;
if (key < root.key)

return find(key,root.left);
if (key > root.key)

return find(key,root.right) ;
return root.data;

Winter 2014 CSE373: Data Structures & Algorithms 8

Find in BST, lterative

Data find (Key key, Node root) {
while (root !'= null
&& root.key !'= key) {
if (key < root.key)
root = root.left;
else (key > root.key)
root = root.right;
}
if (root == null)
return null;
return root.data;

}

Winter 2014 CSE373: Data Structures & Algorithms 9

Other “Finding” Operations

* Find minimum node
— “the liberal algorithm”
* Find maximum node
— “the conservative algorithm”

 Find predecessor
* Find successor

Winter 2014 CSE373: Data Structures & Algorithms 10

Insert in BST

insert (13)
insert (8)
insert (31)

(New) insertions happen
only at leaves — easy!

Winter 2014 CSE373: Data Structures & Algorithms 11

Deletion in BST

Winter 2014

Why might deletion be harder than insertion?

CSE373: Data Structures & Algorithms

12

Deletion

 Removing an item disrupts the tree structure

 Basicidea: £ind the node to be removed, then
“fix” the tree so that it is still a binary search tree

 Three cases:
— Node has no children (leaf)
— Node has one child
— Node has two children

Winter 2014 CSE373: Data Structures & Algorithms

13

Deletion — The Leaf Case

delete (17)

Winter 2014 CSE373: Data Structures & Algorithms

14

Deletion — The One Child Case

delete (15)

Winter 2014 CSE373: Data Structures & Algorithms

15

Deletion — The Two Child Case

delete (5)

What can we replace 5 with?

Winter 2014 CSE373: Data Structures & Algorithms

16

Deletion — The Two Child Case

|dea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:

» successor fromright subtree: £indMin (node.right)

» predecessor from left subtree: findMax (node.left)
— These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
» Leaf or one child case — easy cases of delete!

Winter 2014 CSE373: Data Structures & Algorithms 17

Lazy Deletion

* Lazy deletion can work well for a BST
— Simpler
— Can do “real deletions” later as a batch
— Some inserts can just “undelete” a tree node

 But
— Can waste space and slow down find operations
— Make some operations more complicated:
 How would you change £indMin and £indMax?

Winter 2014 CSE373: Data Structures & Algorithms

18

BuildTree for BST

Let’'s consider buildTree
— Insert all, starting from an empty tree

Insert keys 1, 2, 3, 4, 5,6, 7, 8, 9 into an empty BST

— If inserted in given order,
what is the tree?

O(n?)
— What big-O runtime for ~ Not a happy place
this kind of sorted input?

— Is inserting in the reverse order
any better?

Winter 2014 CSE373: Data Structures & Algorithms

19

BuildTree for BST
 Insertkeys 1,2, 3,4,5,6, 7,8, 9into an empty BST

* What we if could somehow re-arrange them

— median first, then left median, right median, etc.
-53,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?
O(n log n), definitely better

Winter 2014 CSE373: Data Structures & Algorithms 20

Unbalanced BST

« Balancing a tree at build time is insufficient, as sequences of
operations can eventually transform that carefully balanced tree

into the dreaded list

« At that point, everything is
O(n) and nobody is happy

— find
— insert
— delete

Winter 2014 CSE373: Data Structures & Algorithms 21

Balanced BST

Observation

« BST: the shallower the better!

« For a BST with n nodes inserted in arbitrary order
— Average height is O(1og n) — see text for proof
— Worst case height is O(n)

« Simple cases, such as inserting in key order, lead to
the worst-case scenario

Solution: Require a Balance Condition that

1. Ensures depth is always O(logn) - strong enough!
2. Is efficient to maintain — not too strong!

Winter 2014 CSE373: Data Structures & Algorithms 22

1.

2.

Potential Balance Conditions

Left and right subtrees of the root
have equal number of nodes

Too weak!
Height mismatch example: é

Left and right subtrees of the root
have equal height

Too weak!
Double chain example:

Winter 2014 CSE373: Data Structures & Algorithms

23

3.

4.

Potential Balance Conditions

Left and right subtrees of every node
have equal number of nodes

Too strong!
Only perfect trees (2" — 1 nodes) é

Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2" — 1 nodes)

Winter 2014 CSE373: Data Structures & Algorithms

24

The AVL Balance Condition

Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) — height(node.right)
AVL property. for every node x, —1 < balance(x) <1

 Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

« Efficient to maintain
— Using single and double rotations

Winter 2014 CSE373: Data Structures & Algorithms

25

The AVL Tree Data Structure

Structural properties
1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property
— Same as for BST

Winter 2014 CSE373: Data Structures & Algorithms 26

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms

27

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms

28

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

— If we can prove that S(h) grows exponentially in h, then a tree
with n nodes has a logarithmic height

« Step 1: Define S(h) inductively using AVL property h
— S(-1)=0, S(0)=1, S(1)=2
— Forh =1, S(h) = 1+S(h-1)+S(h-2) h-2 h-1

« Step 2: Show this recurrence grows really fast
— Can prove for all h, S(h) > ¢" — 1 where
¢ is the golden ratio, (1+V5)/2, about 1.62
— Growing faster than 1.6" is “plenty exponential”
* It does not grow faster than 27

Winter 2014 CSE373: Data Str@étures & Algorithms

Before we prove it

* Good intuition from plots comparing:
— S(h) computed directly from the definition

— ((1+V5)/2)h

« S(h) is always bigger, up to trees with huge numbers of nodes
— Graphs aren’t proofs, so let’s prove it

400

350

300

250

200

150

100

50

/

/]

/P

012 3 4 56 7 8 91011

== minimum number of
nodesin tree

== ((1+sqrt(5))/2)*h

Winter 2014

120000000

100000000

80000000

60000000

40000000

20000000

0

4

I

0 3 6 9121518212427303336

== minimum number of
nodesin tree

== ((1+sqrt(5))/2)*h

CSE373: Data Structures & Algorithms

30

The Golden Ratio a b

& o o
N _/
1++/5 Y
¢ = Iz1.62 a+b
2 a+bistoaasaistob

This is a special number

» Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the
golden ratio: If (a+b) /a = a/b,thena = ¢b

« We will need one special arithmetic fact about ¢ :

h* = ((1+51/2)/2)2
1 + 2*5/2 + 5)/4
6 + 2%51/2) /4

Winter 2014 CSE373: Data Str@dtures & Algorithms

S(-1)=0, S(0)=1, S(1)=2
The proof 201 " (3(%) 2 1-(+S)(h-1)+S(h-2)

Theorem: For all h =0, S(h) > ¢" — 1
Proof: By induction on h
Base cases:

S0)=1>¢°-1=0 S(1)=2>¢"-1=0.62
Inductive case (k> 1):
Show S(k+1) > ¢¥*7 — 1 assuming S(k) > ¢¥ — 1 and S(k-1) > ¢k —1

S(k+1) =1+ S(k) + S(k-1) by definition of S
>1+ ¢pk—1+ ¢*" -1 by induction

= ¢k + k71 -1 by arithmetic (1-1=0)

=k (p+1)—1 by arithmetic (factor k-7)

= kT p2—1 by special property of ¢

= k1 -1 by arithmetic (add exponents)

Winter 2014 CSE373: Data Structures & Algorithms 32

Good news

Proof means that if we have an AVL tree, then £ind is O(1log n)

— Recall logarithms of different bases > 1 differ by only a
constant factor

But as we insert and delete elements, we need to:
1. Track balance

2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after insert (30)? @

Winter 2014 CSE373: Data Structures & Algorithms 33

An AVL Tree

\

10 key
value
3 height
\ children

Track height at all times!

Winter 2014 CSE373: Data Structures & Algorithms

34

AVL tree operations

« AVL find:
— Same as BST f£ind

e AVL insert:

— First BST insert, then check balance and potentially “fix”
the AVL tree

— Four different imbalance cases

« AVL delete:
— The “easy way’ is lazy deletion

— Otherwise, do the deletion and then have several imbalance
cases (we will likely skip this but post slides for those
interested)

Winter 2014 CSE373: Data Structures & Algorithms 35

