
CSE373: Data Structures & Algorithms

Lecture 7: AVL Trees

Aaron Bauer
Winter 2014

Announcements

•  Turn in HW2
•  Midterm in class next Wednesday
•  HW3 out, due Friday, February 7
•  TA session tomorrow

Winter 2014 2 CSE373: Data Structures & Algorithms

Predecessor and Successor v2

•  Predecessor
–  max of left subtree
–  parent of first right-child ancestor (including itself)

•  Successor
–  min of right subtree
–  parent of first left-child ancestor (including itself)

Winter 2014 3 CSE373: Data Structures & Algorithms

20 9 2

15 5

12

30 7 17 10

20 9 2 15 5 12 30 7 17 10

4

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties
1.  Binary tree property
2.  Balance property:

balance of every node is
between -1 and 1

Result:
Worst-case depth is

O(log n)

Ordering property
–  Same as for BST

15

Winter 2014 CSE373: Data Structures & Algorithms

11 1

8 4

6

10 12

7 0

0 0

0

1

1

2

3

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms 5

3

11 7 1

8 4

6

2

5

0

0 0 0

1

1

2

3

4

An AVL tree?

Winter 2014 CSE373: Data Structures & Algorithms 6

7

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h
–  If we can prove that S(h) grows exponentially in h, then a tree

with n nodes has a logarithmic height

•  Step 1: Define S(h) inductively using AVL property
–  S(-1)=0, S(0)=1, S(1)=2
–  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

•  Step 2: Show this recurrence grows really fast
–  Can prove for all h, S(h) > φh – 1 where

 φ is the golden ratio, (1+√5)/2, about 1.62
–  Growing faster than 1.6h is “plenty exponential”

•  It does not grow faster than 2h

h-1 h-2

h

Winter 2014 CSE373: Data Structures & Algorithms

Before we prove it

•  Good intuition from plots comparing:
–  S(h) computed directly from the definition
–  ((1+√5)/2) h

•  S(h) is always bigger, up to trees with huge numbers of nodes
–  Graphs aren’t proofs, so let’s prove it

Winter 2014 8 CSE373: Data Structures & Algorithms

9

The Golden Ratio

62.1
2
51
≈

+
=φ

This is a special number

•  Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the
golden ratio: If (a+b)/a = a/b, then a = φb

•  We will need one special arithmetic fact about φ :
 φ2 = ((1+51/2)/2)2

 = (1 + 2*51/2 + 5)/4
 = (6 + 2*51/2)/4
 = (3 + 51/2)/2
 = 1 + (1 + 51/2)/2
 = 1 + φ

Winter 2014 CSE373: Data Structures & Algorithms

The proof

Theorem: For all h ≥ 0, S(h) > φh – 1
Proof: By induction on h
Base cases:

S(0) = 1 > φ0 – 1 = 0 S(1) = 2 > φ1 – 1 ≈ 0.62
Inductive case (k > 1):

 Show S(k+1) > φk+1 – 1 assuming S(k) > φk – 1 and S(k-1) > φk-1 – 1

 S(k+1) = 1 + S(k) + S(k-1) by definition of S
 > 1 + φk – 1 + φk-1 – 1 by induction

 = φk + φk-1 – 1 by arithmetic (1-1=0)
 = φk-1 (φ + 1) – 1 by arithmetic (factor φk-1)

 = φk-1 φ2 – 1 by special property of φ
 = φk+1 – 1 by arithmetic (add exponents)

Winter 2014 10 CSE373: Data Structures & Algorithms

S(-1)=0, S(0)=1, S(1)=2
For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

Good news

Proof means that if we have an AVL tree, then find is O(log n)
–  Recall logarithms of different bases > 1 differ by only a

constant factor

But as we insert and delete elements, we need to:
1.  Track balance
2.  Detect imbalance
3.  Restore balance

Winter 2014 11 CSE373: Data Structures & Algorithms

Is this AVL tree balanced?
How about after insert(30)?

9 2

5

10

7

15

20

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …
3

value

height

children

Track height at all times!

10 key

Winter 2014 CSE373: Data Structures & Algorithms 12

AVL tree operations
•  AVL find:

–  Same as BST find

•  AVL insert:
–  First BST insert, then check balance and potentially “fix”

the AVL tree
–  Four different imbalance cases

•  AVL delete:
–  The “easy way” is lazy deletion
–  Otherwise, do the deletion and then have several imbalance

cases (we will likely skip this but post slides for those
interested)

Winter 2014 CSE373: Data Structures & Algorithms 13

Insert: detect potential imbalance

1.  Insert the new node as in a BST (a new leaf)
2.  For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3.  So after recursive insertion in a subtree, detect height imbalance

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
–  There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)
–  After rebalancing this deepest node, every node is balanced
–  So at most one node needs to be rebalanced

Winter 2014 14 CSE373: Data Structures & Algorithms

Case #1: Example

Winter 2014 15 CSE373: Data Structures & Algorithms

Insert(6)
Insert(3)
Insert(1)

Third insertion violates

balance property
•  happens to be at

the root

What is the only way to
fix this?

6

3

1

2

1

0

6

3

1

0

6
0

Fix: Apply “Single Rotation”
•  Single rotation: The basic operation we’ll use to rebalance

–  Move child of unbalanced node into parent position
–  Parent becomes the “other” child (always okay in a BST!)
–  Other subtrees move in only way BST allows (next slide)

Winter 2014 16 CSE373: Data Structures & Algorithms

3

1 6
0 0

1
6

3

0

1

2

AVL Property violated here

Intuition: 3 must become root
new-parent-height = old-parent-height-before-insert

1

The example generalized
•  Node imbalanced due to insertion somewhere in

 left-left grandchild increasing height
–  1 of 4 possible imbalance causes (other three coming)

•  First we did the insertion, which would make a imbalanced

Winter 2014 17 CSE373: Data Structures & Algorithms

a

Z
Y

b

X

h h
h

h+1
h+2 a

Z
Y

b

X

h+1 h
h

h+2
h+3

The general left-left case
•  Node imbalanced due to insertion somewhere in

 left-left grandchild
–  1 of 4 possible imbalance causes (other three coming)

•  So we rotate at a, using BST facts: X < b < Y < a < Z

Winter 2014 18 CSE373: Data Structures & Algorithms

•  A single rotation restores balance at the node
–  To same height as before insertion, so ancestors now balanced

a

Z
Y

b

X

h+1 h
h

h+2
h+3 b

Z Y

a
h+1 h h

h+1

h+2

X

Another example: insert(16)

Winter 2014 19 CSE373: Data Structures & Algorithms

10 4

22 8

15

 3 6

19

17 20

24

16

Another example: insert(16)

Winter 2014 20 CSE373: Data Structures & Algorithms

10 4

22 8

15

 3 6

19

17 20

24

16

10 4

 8

15

 3 6

19

17

20 16

22

24

The general right-right case

•  Mirror image to left-left case, so you rotate the other way
–  Exact same concept, but need different code

Winter 2014 21 CSE373: Data Structures & Algorithms

a

Z Y

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

–  First wrong idea: single rotation like we did for left-left

Winter 2014 22 CSE373: Data Structures & Algorithms

3

6

1

0

1

 2

6

1 3

1

0 0

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

–  Second wrong idea: single rotation on the child of the
unbalanced node

Winter 2014 23 CSE373: Data Structures & Algorithms

3

6

1

0

1

 2

6

3

1

0

 1

 2

Sometimes two wrongs make a right J
•  First idea violated the BST property
•  Second idea didn’t fix balance
•  But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
•  Double rotation:

1.  Rotate problematic child and grandchild
2.  Then rotate between self and new child

Winter 2014 24 CSE373: Data Structures & Algorithms

3

6

1

0

1

 2

6

3

1

0

 1

 2
1

0 0
1

3

6

Intuition: 3 must become root

The general right-left case

Winter 2014 25 CSE373: Data Structures & Algorithms

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2

h+3

Z

b
h

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Comments
•  Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
–  So no ancestor in the tree will need rebalancing

•  Does not have to be implemented as two rotations; can just do:

Winter 2014 26 CSE373: Data Structures & Algorithms

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Easier to remember than you may think:
 Move c to grandparent’s position

 Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

•  Mirror image of right-left
–  Again, no new concepts, only new code to write

Winter 2014 27 CSE373: Data Structures & Algorithms

a

h-1

h

h h

V U

h+1

h+2

h+3

Z

X

b
c

c

X
h-1

h+1
h

h+1

V U

h+2

Z

a
h

b
h

Insert, summarized

•  Insert as in a BST

•  Check back up path for imbalance, which will be 1 of 4 cases:
–  Node’s left-left grandchild is too tall
–  Node’s left-right grandchild is too tall
–  Node’s right-left grandchild is too tall
–  Node’s right-right grandchild is too tall

•  Only one case occurs because tree was balanced before insert

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
–  So all ancestors are now balanced

Winter 2014 28 CSE373: Data Structures & Algorithms

Now efficiency

•  Worst-case complexity of find: O(log n)

–  Tree is balanced

•  Worst-case complexity of insert: O(log n)
–  Tree starts balanced
–  A rotation is O(1) and there’s an O(log n) path to root
–  (Same complexity even without one-rotation-is-enough fact)
–  Tree ends balanced

•  Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Winter 2014 29 CSE373: Data Structures & Algorithms

Pros and Cons of AVL Trees

Winter 2014 CSE373: Data Structures & Algorithms 30

Arguments for AVL trees:

1.  All operations logarithmic worst-case because trees are always

balanced
2.  Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1.  Difficult to program & debug [but done once in a library!]
2.  More space for height field
3.  Asymptotically faster but rebalancing takes a little time
4.  Most large searches are done in database-like systems on disk and

use other structures (e.g., B-trees, a data structure in the text)
5.  If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in the text)

A new ADT: Priority Queue

•  A priority queue holds compare-able data
–  Like dictionaries and unlike stacks and queues, need to

compare items
•  Given x and y, is x less than, equal to, or greater than y
•  Meaning of the ordering can depend on your data
•  Many data structures require this: dictionaries, sorting

–  Integers are comparable, so will use them in examples
•  But the priority queue ADT is much more general
•  Typically two fields, the priority and the data

Winter 2014 31 CSE373: Data Structures & Algorithms

Priorities
•  Each item has a “priority”

–  The lesser item is the one with the greater priority
–  So “priority 1” is more important than “priority 4”
–  (Just a convention, think “first is best”)

•  Operations:
–  insert
–  deleteMin
–  is_empty

•  Key property: deleteMin returns and deletes the item with
greatest priority (lowest priority value)
–  Can resolve ties arbitrarily

Winter 2014 32 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert x1 with priority 5
 insert x2 with priority 3
 insert x3 with priority 4
 a = deleteMin // x2
 b = deleteMin // x3
 insert x4 with priority 2
 insert x5 with priority 6
 c = deleteMin // x4
 d = deleteMin // x1

•  Analogy: insert is like enqueue, deleteMin is like dequeue

–  But the whole point is to use priorities instead of FIFO

Winter 2014 33 CSE373: Data Structures & Algorithms

