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Announcements 

•  Turn in HW2 
•  Midterm in class next Wednesday 
•  HW3 out, due Friday, February 7 
•  TA session tomorrow 

Winter 2014 2 CSE373: Data Structures & Algorithms 



Predecessor and Successor v2 

•  Predecessor 
–  max of left subtree 
–  parent of first right-child ancestor (including itself) 

•  Successor 
–  min of right subtree 
–  parent of first left-child ancestor (including itself) 
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The AVL Tree Data Structure 
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Structural properties 
1.  Binary tree property 
2.  Balance property: 

balance of every node is 
between -1 and 1 

Result: 
Worst-case depth is 

O(log n)  
 

Ordering property 
–  Same as for BST 
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The shallowness bound 

Let S(h) = the minimum number of nodes in an AVL tree of height h 
–  If we can prove that S(h) grows exponentially in h, then a tree 

with n nodes has a logarithmic height 

•  Step 1: Define S(h) inductively using AVL property 
–  S(-1)=0, S(0)=1, S(1)=2 
–  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

•  Step 2: Show this recurrence grows really fast 
–  Can prove for all h,  S(h) > φh – 1 where 

 φ is the golden ratio, (1+√5)/2, about 1.62 
–  Growing faster than 1.6h is “plenty exponential” 

•  It does not grow faster than 2h 

h-1 h-2 

h 
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Before we prove it 

•  Good intuition from plots comparing: 
–  S(h) computed directly from the definition 
–  ((1+√5)/2) h 

•  S(h) is always bigger, up to trees with huge numbers of nodes 
–  Graphs aren’t proofs, so let’s prove it 
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The Golden Ratio 

62.1
2
51
≈

+
=φ

This is a special number 

•  Aside: Since the Renaissance, many artists and architects have 
proportioned their work (e.g., length:height) to approximate the 
golden ratio: If (a+b)/a = a/b, then a = φb 

•  We will need one special arithmetic fact about φ : 
            φ2      = ((1+51/2)/2)2   

  = (1 + 2*51/2 + 5)/4  
  = (6 + 2*51/2)/4  
 = (3 + 51/2)/2  
  = 1 + (1 + 51/2)/2 
  = 1 + φ 
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The proof 

Theorem: For all h ≥ 0, S(h) > φh – 1  
Proof: By induction on h 
Base cases: 

S(0) = 1 > φ0 – 1 = 0   S(1) = 2 > φ1 – 1 ≈ 0.62 
Inductive case (k > 1):  

 Show S(k+1) > φk+1 – 1 assuming S(k) > φk – 1 and S(k-1) > φk-1 – 1 
 

 S(k+1) = 1 + S(k) + S(k-1)  by definition of S 
      > 1 + φk – 1 + φk-1 – 1 by induction 

                 = φk + φk-1 – 1              by arithmetic (1-1=0) 
                 = φk-1 (φ + 1) – 1  by arithmetic (factor φk-1 ) 

             = φk-1 φ2 – 1                 by special property of φ 
                 = φk+1 – 1                    by arithmetic (add exponents) 
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S(-1)=0, S(0)=1, S(1)=2 
For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

 



Good news 

Proof means that if we have an AVL tree, then find is O(log n) 
–  Recall logarithms of different bases > 1 differ by only a 

constant factor 
 

But as we insert and delete elements, we need to: 
1.  Track balance 
2.  Detect imbalance 
3.  Restore balance 
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An AVL Tree 
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AVL tree operations 
•  AVL find:  

–  Same as BST find 

•  AVL insert:  
–  First BST insert, then check balance and potentially “fix” 

the AVL tree 
–  Four different imbalance cases 

•  AVL delete:  
–  The “easy way” is lazy deletion 
–  Otherwise, do the deletion and then have several imbalance 

cases (we will likely skip this but post slides for those 
interested) 
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Insert: detect potential imbalance 

1.  Insert the new node as in a BST (a new leaf) 
2.  For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3.  So after recursive insertion in a subtree, detect height imbalance 

and perform a rotation to restore balance at that node 

 

All the action is in defining the correct rotations to restore balance 

 

Fact that an implementation can ignore: 
–  There must be a deepest element that is imbalanced after the 

insert (all descendants still balanced) 
–  After rebalancing this deepest node, every node is balanced 
–  So at most one node needs to be rebalanced 
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Case #1: Example 
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Insert(3) 
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Third insertion violates 

balance property 
•  happens to be at 

the root 

What is the only way to 
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Fix: Apply “Single Rotation” 
•  Single rotation: The basic operation we’ll use to rebalance 

–  Move child of unbalanced node into parent position 
–  Parent becomes the “other” child (always okay in a BST!) 
–  Other subtrees move in only way BST allows (next slide) 
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The example generalized 
•  Node imbalanced due to insertion somewhere in  

 left-left grandchild increasing height 
–  1 of 4 possible imbalance causes (other three coming) 

•  First we did the insertion, which would make a  imbalanced 
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The general left-left case 
•  Node imbalanced due to insertion somewhere in  

 left-left grandchild 
–  1 of 4 possible imbalance causes (other three coming) 

•  So we rotate at a, using BST facts: X < b < Y < a < Z 
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•  A single rotation restores balance at the node 
–  To same height as before insertion, so ancestors now balanced 
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Another example: insert(16) 
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Another example: insert(16) 
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The general right-right case 

•  Mirror image to left-left case, so you rotate the other way 
–  Exact same concept, but need different code 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

–  First wrong idea: single rotation like we did for left-left 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example: insert(1), insert(6), insert(3) 

–  Second wrong idea: single rotation on the child of the 
unbalanced node 
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Sometimes two wrongs make a right J 
•  First idea violated the BST property 
•  Second idea didn’t fix balance 
•  But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.) 
•  Double rotation:  

1.  Rotate problematic child and grandchild 
2.  Then rotate between self and new child 
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The general right-left case 
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Comments 
•  Like in the left-left and right-right cases, the height of the subtree 

after rebalancing is the same as before the insert 
–  So no ancestor in the tree will need rebalancing 

•  Does not have to be implemented as two rotations; can just do: 
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     Put a, b, X, U, V, and Z in the only legal positions for a BST 



The last case: left-right 

•  Mirror image of right-left 
–  Again, no new concepts, only new code to write 
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Insert, summarized 

•  Insert as in a BST 

•  Check back up path for imbalance, which will be 1 of 4 cases: 
–  Node’s left-left grandchild is too tall 
–  Node’s left-right grandchild is too tall 
–  Node’s right-left grandchild is too tall 
–  Node’s right-right grandchild is too tall 

•  Only one case occurs because tree was balanced before insert 

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
–  So all ancestors are now balanced 
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Now efficiency 
 
•  Worst-case complexity of find: O(log n) 

–  Tree is balanced 
 

•  Worst-case complexity of insert: O(log n) 
–  Tree starts balanced 
–  A rotation is O(1) and there’s an O(log n) path to root 
–  (Same complexity even without one-rotation-is-enough fact) 
–  Tree ends balanced 

•  Worst-case complexity of buildTree: O(n log n) 
 
Takes some more rotation action to handle delete… 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1.  All operations logarithmic worst-case because trees are always  

balanced 
2.  Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1.  Difficult to program & debug [but done once in a library!] 
2.  More space for height field 
3.  Asymptotically faster but rebalancing takes a little time 
4.  Most large searches are done in database-like systems on disk and 

use other structures (e.g., B-trees, a data structure in the text) 
5.  If amortized (later, I promise) logarithmic time is enough, use splay 

trees (also in the text) 



A new ADT: Priority Queue 

•  A priority queue holds compare-able data 
–  Like dictionaries and unlike stacks and queues, need to 

compare items 
•  Given x and y, is x less than, equal to, or greater than y 
•  Meaning of the ordering can depend on your data 
•  Many data structures require this: dictionaries, sorting 

–  Integers are comparable, so will use them in examples 
•  But the priority queue ADT is much more general 
•  Typically two fields, the priority and the data 
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Priorities 
•  Each item has a “priority” 

–  The lesser item is the one with the greater priority 
–  So “priority 1” is more important than “priority 4” 
–  (Just a convention, think “first is best”) 

•  Operations:  
–  insert 
–  deleteMin 
–  is_empty 

•  Key property: deleteMin  returns and deletes the item with 
greatest priority (lowest priority value) 
–  Can resolve ties arbitrarily 
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Example 

 insert x1 with priority 5 
 insert x2 with priority 3 
 insert x3 with priority 4 
 a = deleteMin // x2 
 b = deleteMin // x3 
 insert x4 with priority 2 
 insert x5 with priority 6 
 c = deleteMin // x4 
 d = deleteMin  // x1 

 
•  Analogy: insert is like enqueue, deleteMin is like dequeue 

–  But the whole point is to use priorities instead of FIFO 
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