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Announcements 

•  Midterm next week 
– Midterm review TA session on Tuesday 
– Shuo extra office hours 12:30-1:30 Monday 

•  Homework 1 feedback out soon 
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Priority Queue ADT 

•  Stores elements with data and comparable priorities 
–  “priority 1” is more important than “priority 4” 

•  Operations 
–  insert 
–  deleteMin 
–  is_empty 
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Applications 

Like all good ADTs, the priority queue arises often 
–  Sometimes blatant, sometimes less obvious 

•  Run multiple programs in the operating system 
–  “critical” before “interactive” before “compute-intensive” 
–  Maybe let users set priority level 

•  Treat hospital patients in order of severity (or triage) 
•  Select print jobs in order of decreasing length? 
•  Forward network packets in order of urgency 
•  Select most frequent symbols for data compression (cf. CSE143) 
•  Sort (first insert all, then repeatedly deleteMin) 

–  Much like Homework 1 uses a stack to implement reverse 
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More applications 

•  “Greedy” algorithms 
–  May see an example when we study graphs in a few weeks 

•  Discrete event simulation (system simulation, virtual worlds, …) 
–  Each event e happens at some time t, updating system state 

and generating new events e1, …, en at times t+t1, …, t+tn 
–  Naïve approach: advance “clock” by 1 unit at a time and 

process any events that happen then 
–  Better: 

•  Pending events in a priority queue (priority = event time) 
•  Repeatedly: deleteMin and then insert new events 
•  Effectively “set clock ahead to next event” 
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Finding a good data structure 

•  Will show an efficient, non-obvious data structure for this ADT 
–  But first let’s analyze some “obvious” ideas for n data items 
–  All times worst-case; assume arrays “have room” 

data          insert algorithm / time      deleteMin algorithm / time 
unsorted array   
unsorted linked list 
sorted circular array 
sorted linked list  
binary search tree 
AVL tree 
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add at end          O(1)         search                O(n) 
add at front         O(1)         search                O(n) 
search / shift       O(n)          move front          O(1) 
put in right place O(n)          remove at front   O(1) 
put in right place O(n)       leftmost               O(n) 
put in right place O(log n)  leftmost       O(log n) 



More on possibilities 

•  If priorities are random, binary search tree will likely do better 
–  O(log n) insert and O(log n) deleteMin on average 

 

•  One more idea: if priorities are 0, 1, …, k can use array of  lists 
–  insert: add to front of list at arr[priority], O(1) 
–  deleteMin: remove from lowest non-empty list O(k) 

•  We are about to see a data structure called a “binary heap” 
–  O(log n) insert and O(log n) deleteMin worst-case 

•  Possible because we don’t support unneeded 
operations; no need to maintain a full sort 

–  Very good constant factors 
–  If items arrive in random order, then insert is O(1) on 

average 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is greater 

than the priority of its parent 
–  Not a binary search tree 
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So: 
•  Where is the highest-priority item? 
•  What is the height of a heap with n items? 



Operations: basic idea 

•  findMin: return root.data 
•  deleteMin:  

1.   answer = root.data 
2.  Move right-most node in last 

row to root to restore 
structure property 

3.  “Percolate down” to restore 
heap property 

•  insert: 
1.  Put new node in next position 

on bottom row to restore 
structure property 

2.  “Percolate up” to restore 
heap property 

Winter 2014 9 CSE373: Data Structures & Algorithms 

99 60 40 

80 20 

10 

50 700 

85 

Overall strategy: 
•  Preserve structure property 
•  Break and restore heap 

property 
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DeleteMin 

3 4 

9 8 5 7 

10 6 9 11 

1. Delete (and later return) value at 
root node 
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2. Restore the Structure Property 

•  We now have a “hole” at the root 
–  Need to fill the hole with another 

value 

•  When we are done, the tree will have 
one less node and must still be complete 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 
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3. Restore the Heap Property 

Percolate down:  
•   Keep comparing with both children  
•   Swap with lesser child and go down one level 
•   Done if both children are ≥ item or reached a leaf node 
 
Why is this correct?  What is the run time? 
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? 

? 
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DeleteMin: Run Time Analysis 

•  Run time is O(height of heap) 

•  A heap is a complete binary tree 

•  Height of a complete binary tree of n nodes? 
–  height = ⎣ log2(n) ⎦ 

•  Run time of deleteMin is O(log n) 
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Insert 

•  Add a value to the tree 

•  Afterwards, structure and heap 
properties must still be correct 

 8 4 

9 10 5 7 

6 9 11 

1 

2 

Winter 2014 
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Insert: Maintain the Structure Property 

•  There is only one valid tree shape after 
we add one more node 

•  So put our new data there and then 
focus on restoring the heap property 8 4 

9 10 5 7 

6 9 11 

1 

2 
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Maintain the heap property 

2 

8 4 

9 10 5 7 

6 9 11 

1 

Percolate up: 
•   Put new data in new location 
•   If parent larger, swap with parent, and continue 
•   Done if parent ≤ item or reached root 
 
Why is this correct?  What is the run time? 

? 
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Insert: Run Time Analysis 

•  Like deleteMin, worst-case time proportional to tree height 
–  O(log n) 

•  But… deleteMin needs the “last used” complete-tree position 
and insert needs the “next to use” complete-tree position 
–  If “keep a reference to there” then insert and deleteMin 

have to adjust that reference: O(log n) in worst case 
–  Could calculate how to find it in O(log n) from the root given 

the size of the heap 
•  But it’s not easy 
•  And then insert is always O(log n), promised O(1) on 

average (assuming random arrival of items) 

•  There’s a “trick”: don’t represent complete trees with explicit edges! 
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Review 

•  Priority Queue ADT: insert comparable object, deleteMin 
•  Binary heap data structure: Complete binary tree where each 

node has priority value greater than its parent 
•  O(height-of-tree)=O(log n) insert and deleteMin operations 

–  insert:        put at new last position in tree and percolate-up 
–  deleteMin:  remove root, put last element at root and   

                     percolate-down 
•  But: tracking the “last position” is painful and we can do better 
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Array Representation of Binary Trees 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

implicit (array) implementation: 
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Judging the array implementation 

Plusses: 
•  Non-data space: just index 0 and unused space on right 

–  In conventional tree representation, one edge per node 
(except for root), so n-1 wasted space (like linked lists) 

–  Array would waste more space if tree were not complete 
•  Multiplying and dividing by 2 is very fast (shift operations in 

hardware) 
•  Last used position is just index size 

Minuses: 
•  Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Plusses outweigh minuses: “this is how people do it” 
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Pseudocode: insert 
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void insert(int val) { 
 if(size==arr.length-1) 

    resize();   
  size++; 
  i=percolateUp(size,val); 
  arr[i] = val; 
} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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85 

10 20 80 40 60 85 99 700 50 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Pseudocode: deleteMin 
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int deleteMin() { 
  if(isEmpty()) throw… 
  ans = arr[1]; 
  hole = percolateDown 
          (1,arr[size]); 
  arr[hole] = arr[size]; 
  size--; 
  return ans; 
} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(right > size || 
     arr[left] < arr[right]) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 

99 60 40 

80 20 

10 

700 50 

85 

10 20 80 40 60 85 99 700 50 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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16 
0 1 2 3 4 5 6 7 

  16 



Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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16 32 
0 1 2 3 4 5 6 7 

  16 

32 



Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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4 32 16 
0 1 2 3 4 5 6 7 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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0 1 2 3 4 5 6 7 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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4 32 16 67 105 
0 1 2 3 4 5 6 7 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Other operations 

•  decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p 
–  Change priority and percolate up 

•  increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value by p 
–  Change priority and percolate down 

•  remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue 

–  decreaseKey with p = ∞, then deleteMin 
 

Running time for all these operations? 
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Build Heap 

•  Suppose you have n items to put in a new (empty) priority queue 
–  Call this operation buildHeap  

•  n inserts works 
–  Only choice if ADT doesn’t provide buildHeap explicitly 
–  O(n log n) 

•  Why would an ADT provide this unnecessary operation? 
–  Convenience 
–  Efficiency: an O(n) algorithm called Floyd’s Method 
–  Common issue in ADT design: how many specialized 

operations 
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Floyd’s Method 

1.  Use n items to make any complete tree you want 
–  That is, put them in array indices 1,…,n 

2.  Treat it as a heap and fix the heap-order property 
–  Bottom-up: leaves are already in heap order, work up 

toward the root one level at a time 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Example 

•  In tree form for readability 
–  Purple for node not less than 

descendants  
•  heap-order problem 

–  Notice no leaves are purple 
–  Check/fix each non-leaf 

bottom-up (6 steps here) 
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Example 
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4 

Step 1 

•  Happens to already be less than children (er, child) 



Example 
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6 7 1 8 

9 2 10 3 

11 5 

12 

4 

Step 2 

•  Percolate down (notice that moves 1 up) 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 
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Step 3 

•  Another nothing-to-do step 
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Example 
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Step 4 

•  Percolate down as necessary (steps 4a and 4b) 
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Example 
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Step 5 
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Example 
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Step 6 
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But is it right? 

•  “Seems to work” 
–  Let’s prove it restores the heap property (correctness) 
–  Then let’s prove its running time (efficiency) 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 
•  True initially: If j > size/2, then j is  a leaf 

–  Otherwise its left child would be at position > size 
•  True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 
for any descendants 

So after the loop finishes, all nodes are less than their children 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 
•  size/2 loop iterations 
•  Each iteration does one percolateDown, each is O(log n) 

This is correct, but there is a more precise (“tighter”) analysis of 
the algorithm… 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 
•  size/2 total loop iterations: O(n) 
•  1/2 the loop iterations percolate at most 1 step 
•  1/4 the loop iterations percolate at most 2 steps 
•  1/8 the loop iterations percolate at most 3 steps 
•  … 
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

–  So at most 2(size/2) total percolate steps: O(n)  
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Lessons from buildHeap 

•  Without buildHeap, our ADT already let clients implement their 
own in  O(n log n) worst case 
–  Worst case is inserting lower priority values later 

•  By providing a specialized operation internal to the data structure 
(with access to the internal data), we can do O(n) worst case 
–  Intuition: Most data is near a leaf, so better to percolate down 

•  Can analyze this algorithm for: 
–  Correctness:  

•  Non-trivial inductive proof using loop invariant 
–  Efficiency: 

•  First analysis easily proved it was O(n log n) 
•  Tighter analysis shows same algorithm is O(n) 
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Other branching factors 
•  d-heaps: have d children instead of 2 

–  Makes heaps shallower, useful for heaps too big for memory 
(or cache) 

•  Homework: Implement a 3-heap 
–  Just have three children instead of 2 
–  Still use an array with all positions from 1…heap-size used 
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 Index Children Indices 
1 2,3,4 
2 5,6,7 
3 8,9,10 
4 11,12,13 
5 14,15,16 
… … 



What we are skipping 

•  merge: given two priority queues, make one priority queue 
–  How might you merge binary heaps: 

•  If one heap is much smaller than the other? 
•  If both are about the same size? 

–  Different pointer-based data structures for priority queues 
support logarithmic time merge operation (impossible with 
binary heaps) 

•  Leftist heaps, skew heaps, binomial queues 
•  Worse constant factors 
•  Trade-offs! 
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