
CSE373: Data Structures & Algorithms

Lecture 10: Implementing Union-Find

Kevin Quinn
Fall 2015

The plan

Last lecture:

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

•  Applications of union-find

Now:

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Fall 2015 2 CSE373: Data Structures & Algorithms

Our goal

•  Start with an initial partition of n subsets
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

•  May have m find operations and up to n-1 union operations in
any order
–  After n-1 union operations, every find returns same 1 set

•  If total for all these operations is O(m+n), then amortized O(1)
–  We will get very, very close to this
–  O(1) worst-case is impossible for find and union

•  Trivial for one or the other

Fall 2015 3 CSE373: Data Structures & Algorithms

Up-tree data structure

•  Tree with:
–  No limit on branching factor
–  References from children to parent

•  Start with forest of 1-node trees

•  Possible forest after several unions:
–  Will use roots for
 set names

Fall 2015 4 CSE373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

4 5

6

7

Find

find(x):
–  Assume we have O(1) access to each node

•  Will use an array where index i holds node i
–  Start at x and follow parent pointers to root
–  Return the root

Fall 2015 5 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

find(6) = 7

Union
union(x,y):

–  Assume x and y are roots
•  If they are not, just find the roots of their trees

–  Assume distinct trees (else do nothing)
–  Change root of one to have parent be the root of the other

•  Notice no limit on branching factor

Fall 2015 6 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

Simple implementation

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use an
array of length n called up
–  Starting at index 1 on slides
–  Put in array index of parent, with 0 (or -1, etc.) for a root

•  Example:

•  Example:

•  If set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)

1

2

3

4 5

6

7 0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0
1 2 3 4 5 6 7

up

Implement operations

•  Worst-case run-time for union?

•  Worst-case run-time for find?

•  Worst-case run-time for m finds and n-1 unions?

Fall 2015 8 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 // y = find(y)
 // x = find(x)
 up[y] = x;

}

Implement operations

•  Worst-case run-time for union?

•  Worst-case run-time for find?

•  Worst-case run-time for m finds and n-1 unions?

Fall 2015 9 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 // y = find(y)
 // x = find(x)
 up[y] = x;

}

O(1) (with our assumption…)

O(n)

O(m *n)

The plan

Last lecture:

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

•  Applications of union-find

Now:

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Fall 2015 10 CSE373: Data Structures & Algorithms

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

Fall 2015 11 CSE373: Data Structures & Algorithms

The bad case to avoid

Fall 2015 12 CSE373: Data Structures & Algorithms

1 2 3 n …

1

2 3 n

union(2,1)

1

2

3 n

union(3,2)

union(n,n-1)

…

…

1

2

3

n

:
.

find(1) n steps!!

Weighted union

Weighted union:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

Fall 2015 13 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

union(1,7)

2 4 1

Weighted union

Weighted union:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

Fall 2015 14 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

6 1

Weighted union

Weighted union:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

Fall 2015 15 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

6 1

Array implementation

Keep the weight (number of nodes in a second array)
–  Or have one array of objects with two fields

Fall 2015 16 CSE373: Data Structures & Algorithms

1

2

3 2 1
0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight
4 5

6

7 4

1

2

3 1
7
2

1 0
1

7 7 5 0
6

up
weight

4 5

6

7 6 1 2 3 4 5 6 7

Nifty trick

Actually we do not need a second array…
–  Instead of storing 0 for a root, store negation of weight
–  So up value < 0 means a root

Fall 2015 17 CSE373: Data Structures & Algorithms

1

2

3 2 1

-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

up 4 5

6

7 4

1

2

3 1

7 1 -1 7 7 5 -6 up 4 5

6

7 6 1 2 3 4 5 6 7

Bad example? Great example…

Fall 2015 18 CSE373: Data Structures & Algorithms

union(2,1)

union(3,2)

union(n,n-1)

:

find(1) constant here

1 2 3 n

1

2 3 n

1

2

3

n

…

…

1

2

3 n …

General analysis

•  Showing that one worst-case example is now good is not a
proof that the worst-case has improved

•  So let’s prove:
–  union is still O(1) – this is fairly easy to show
–  find is now O(log n)

•  Claim: If we use weighted-union, an up-tree of height h has at
least 2h nodes
–  Proof by induction on h…

Fall 2015 19 CSE373: Data Structures & Algorithms

Exponential number of nodes

P(h)= With weighted-union, up-tree of height h has at least 2h nodes

Proof by induction on h…

•  Base case: h = 0: The up-tree has 1 node and 20= 1
•  Inductive case: Assume P(h) and show P(h+1)

–  A height h+1 tree T has at least one height h child T1
–  T1 has at least 2h nodes by induction
–  And T has at least as many nodes not in T1 than in T1

•  Else weighted-union would have
 had T point to T1, not T1 point to T (!!)

–  So total number of nodes is at least 2h + 2h = 2h+1
.

Fall 2015 20 CSE373: Data Structures & Algorithms

h
T1

T

The key idea

Intuition behind the proof: No one child can have more than half the
nodes

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So find is O(log n)

Fall 2015 21 CSE373: Data Structures & Algorithms

h
T1

T

The new worst case

Fall 2015 22 CSE373: Data Structures & Algorithms

n/2 Weighted Unions

n/4 Weighted Unions

The new worst case (continued)

Fall 2015 23 CSE373: Data Structures & Algorithms

After n/2 + n/4 + …+ 1 Weighted Unions:

Worst
find Height grows by 1 a total of log n times

log n

What about union-by-height

We could store the height of each root rather than number of
descendants (weight)

•  Still guarantees logarithmic worst-case find

–  Proof left as an exercise if interested

•  But does not work well with our next optimization
–  Maintaining height becomes inefficient, but maintaining

weight still easy

Fall 2015 24 CSE373: Data Structures & Algorithms

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

Fall 2015 25 CSE373: Data Structures & Algorithms

Path compression

•  Simple idea: As part of a find, change each encountered
node’s parent to point directly to root
–  Faster future finds for everything on the path (and their

descendants)

Fall 2015 26 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

find(3)

8 9

10

1

2 3 4 5 6

7

8 9 10

11 12

11 12

Solution

(good exampleof psuedocode!)

Fall 2015 27 CSE373: Data Structures & Algorithms

// performs path compression
find(i)
 // find root
 r = i
 while up[r] > 0
 r = up[r]

 // compress path
 if i == r
 return r

 old_parent = up[i]
 while (old_parent != r)
 up[i] = r
 i = old_parent
 old_parent = up[i]

 return r

So, how fast is it?

A single worst-case find could be O(log n)
–  But only if we did a lot of worst-case unions beforehand
–  And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)
–  We won’t prove it – see text if curious
–  But we will understand it:

•  How it is almost O(1)
•  Because total for m finds and n-1 unions is almost O(m+n)

Fall 2015 28 CSE373: Data Structures & Algorithms

A really slow-growing function

log*(x) is the minimum number of times you need to apply “log
of log of log of” to go from x to a number <= 1

For just about every number we care about, log*(x) is 5 (!)
If x <= 265536 then log* x <= 5

–  log* 2 = 1
–  log* 4 = log* 22 = 2
–  log* 16 = log* 2(22) = 3 (log(log(log(16))) = 1)
–  log* 65536 = log* 2((22)2) = 4 (log(log(log(log(65536)))) = 1)
–  log* 265536 = …………… = 5

Fall 2015 29 CSE373: Data Structures & Algorithms

Wait…. how big?

Fall 2015 30 CSE373: Data Structures & Algorithms

Just how big is 265536

 Well 210 = 1024
 220 = 1048576
 230 = 1073741824
 2100 = 1.125x1015

 265536 = ... pretty big

But its still not technically constant

Almost linear

•  Turns out total time for m finds and n-1 unions is:
 O((m+n)*(log* (m+n))
–  Remember, if m+n < 265536 then log* (m+n) < 5

•  At this point, it feels almost silly to mention it, but even that
bound is not tight…
–  “Inverse Ackerman’s function” grows even more slowly than
log*

•  Inverse because Ackerman’s function grows really fast
•  Function also appears in combinatorics and geometry
•  For any number you can possibly imagine, it is < 4

–  Can replace log* with “Inverse Ackerman’s” in bound

Fall 2015 31 CSE373: Data Structures & Algorithms

Theory and terminology

•  Because log* or Inverse Ackerman’s grows so incredibly slowly
–  For all practical purposes, amortized bound is constant, i.e.,

total cost is linear
–  We say “near linear” or “effectively linear”

•  Need weighted-union and path-compression for this bound
–  Path-compression changes height but not weight, so they

interact well

•  As always, asymptotic analysis is separate from “coding it up”

Fall 2015 32 CSE373: Data Structures & Algorithms

