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The plan 

Last lecture: 
 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 

•  Applications of union-find 

Now: 
 

•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Our goal 

•  Start with an initial partition of n subsets 
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n} 

•  May have m find operations and up to n-1 union operations in 
any order 
–  After n-1 union operations, every find returns same 1 set 

•  If total for all these operations is O(m+n), then amortized O(1)  
–  We will get very, very close to this 
–  O(1) worst-case is impossible for find and union 

•  Trivial for one or the other 
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Up-tree data structure 

•  Tree with: 
–  No limit on branching factor  
–  References from children to parent 

•  Start with forest of 1-node trees 

•  Possible forest after several unions: 
–  Will use roots for 
    set names 
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Find  

find(x): 
–  Assume we have O(1) access to each node 

•  Will use an array where index i holds node i 
–  Start at x and follow parent pointers to root 
–  Return the root 
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Union 
union(x,y): 

–  Assume x and y are roots 
•  If they are not, just find the roots of their trees 

–  Assume distinct trees (else do nothing) 
–  Change root of one to have parent be the root of the other 

•  Notice no limit on branching factor 
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Simple implementation 

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use an 
array of length n called up 
–  Starting at index 1 on slides 
–  Put in array index of parent, with 0 (or -1, etc.) for a root 

•  Example: 

•  Example: 

•  If set elements are not contiguous numbers, could have a 
separate dictionary to map elements (keys) to numbers (values) 
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Implement operations 

•  Worst-case run-time for union? 

•  Worst-case run-time for find? 

•  Worst-case run-time for m finds and n-1 unions? 
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 // y = find(y) 
 // x = find(x) 
 up[y] = x; 

} 
  



Implement operations 

•  Worst-case run-time for union?  

•  Worst-case run-time for find?  

•  Worst-case run-time for m finds and n-1 unions?   
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 // y = find(y) 
 // x = find(x) 
 up[y] = x; 

} 
  

O(1) (with our assumption…) 
 
O(n) 
 

O(m *n) 
 



The plan 

Last lecture: 
 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 

•  Applications of union-find 

Now: 
 

•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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The bad case to avoid 
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Weighted union 

Weighted union: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Weighted union 

Weighted union: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Weighted union 

Weighted union: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Array implementation 

Keep the weight (number of nodes in a second array) 
–  Or have one array of objects with two fields 
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Nifty trick 

Actually we do not need a second array… 
–  Instead of storing 0 for a root, store negation of weight 
–  So up value < 0 means a root 
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Bad example? Great example… 
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General analysis 

•  Showing that one worst-case example is now good is not a 
proof that the worst-case has improved 

•  So let’s prove: 
–  union is still O(1) – this is fairly easy to show 
–  find is now O(log n)  

•  Claim: If we use weighted-union, an up-tree of height h has at 
least 2h nodes 
–  Proof by induction on h… 
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Exponential number of nodes 

P(h)= With weighted-union, up-tree of height h has at least 2h nodes 

Proof by induction on h… 
 

•  Base case: h = 0: The up-tree has 1 node and 20= 1 
•  Inductive case: Assume P(h) and show P(h+1) 

–  A height h+1 tree T has at least one height h child T1 
–  T1 has at least 2h nodes by induction 
–  And T has at least as many nodes not in T1 than in T1 

•  Else weighted-union would have  
   had T point to T1, not T1 point to T (!!) 

–  So total number of nodes is at least 2h + 2h = 2h+1
. 

Fall 2015 20 CSE373: Data Structures & Algorithms 

h 
T1 

T 



The key idea 

Intuition behind the proof: No one child can have more than half the 
nodes 
 
 
 
 
 
So, as usual, if number of nodes is exponential in height, 
then height is logarithmic in number of nodes 
 
So find is O(log n)  
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The new worst case 
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n/2 Weighted Unions 
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The new worst case (continued) 
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After n/2 + n/4 + …+ 1 Weighted Unions: 

Worst 
find Height grows by 1 a total of log n times 

log n 



What about union-by-height 

We could store the height of each root rather than number of 
descendants (weight) 
 
•  Still guarantees logarithmic worst-case find 

–  Proof left as an exercise if interested 

•  But does not work well with our next optimization 
–  Maintaining height becomes inefficient, but maintaining 

weight still easy 
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Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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Path compression 

•  Simple idea: As part of a find, change each encountered 
node’s parent to point directly to root 
–  Faster future finds for everything on the path (and their 

descendants) 
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Solution 
 
(good exampleof psuedocode!) 
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// performs path compression 
find(i)  
   // find root 
   r = i 
    while up[r] > 0 
      r = up[r] 
 
   // compress path 
   if i == r 
      return r 
 
   old_parent = up[i] 
   while (old_parent != r) 
      up[i] = r 
      i = old_parent 
      old_parent = up[i] 
 
   return r 
 
  



So, how fast is it? 

A single worst-case find could be O(log n)  
–  But only if we did a lot of worst-case unions beforehand 
–  And path compression will make future finds faster 

Turns out the amortized worst-case bound is much better than O(log n)  
–  We won’t prove it – see text if curious 
–  But we will understand it: 

•  How it is almost O(1) 
•  Because total for m finds and n-1 unions is almost O(m+n) 
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A really slow-growing function 

log*(x) is the minimum number of times you need to apply “log 
of log of log of” to go from x to a number <= 1 
 
For just about every number we care about, log*(x) is 5 (!) 
If x <= 265536 then log* x <= 5 

–  log* 2 = 1 
–  log* 4 = log* 22 = 2 
–  log* 16 = log* 2(22) = 3           (log(log(log(16))) = 1) 
–  log* 65536 = log* 2((22)2) = 4    (log(log(log(log(65536)))) = 1) 
–  log* 265536 = …………… = 5 
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Wait…. how big? 
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Just how big is 265536 
 

 Well 210 = 1024 
        220 = 1048576 
        230 = 1073741824 
        2100 = 1.125x1015 

        265536 = ... pretty big 

But its still not technically constant 



Almost linear 

•  Turns out total time for m finds and n-1 unions is: 
 O((m+n)*(log* (m+n)) 
–  Remember, if m+n < 265536 then log* (m+n) < 5 

•  At this point, it feels almost silly to mention it, but even that 
bound is not tight… 
–  “Inverse Ackerman’s function” grows even more slowly than 
log*  

•  Inverse because Ackerman’s function grows really fast 
•  Function also appears in combinatorics and geometry 
•  For any number you can possibly imagine, it is < 4 

–  Can replace log* with “Inverse Ackerman’s” in bound 
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Theory and terminology 

•  Because log* or Inverse Ackerman’s grows so incredibly slowly 
–  For all practical purposes, amortized bound is constant, i.e., 

total cost is linear 
–  We say “near linear” or “effectively linear” 

•  Need weighted-union and path-compression for this bound 
–  Path-compression changes height but not weight, so they 

interact well 

•  As always, asymptotic analysis is separate from “coding it up” 
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