CSE373: Data Structures \& Algorithms
Lecture 13: Topological Sort / Graph Traversals

Kevin Quinn
Fall 2015

Topological Sort

Disclaimer: This may be wrong. Don't base your course schedules on this Material. Please...

Problem: Given a DAG $G=(\mathrm{V}, \mathrm{E})$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it

Example input:

One example output:
$126,142,143,374,373,417,410,413, \mathrm{XYZ}, 415$

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- Graph with 5 topological orders:
- Do some DAGs have exactly 1 answer?
- Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output \mathbf{v} and conceptually remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}

Example

Output:

Node:
126142143374373410413415417 XYZ
Removed?
In-degree: $00 \begin{array}{llllllllll} & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}$

Output:
126

Node: $\quad 126142143374373410413415417$ XYZ
Removed? x
In-degree: $\begin{array}{lllllllllll} & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ 1 & & & 1 & & & & & & & \end{array}$

Node: 126142143374373410413415417 XYZ Removed? x x In-degree: $0 \begin{array}{llllllllll} & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}$ 1
0

Node:
126142143374373410413415417 XYZ Removed? x x x

In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0					
	0									

Node:
126142143374373410413415417 XYZ Removed? x x x x x

In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2

Node:
126142143374373410413415417 XYZ Removed? x x x x x x In-degree: 0

$\mathbf{2}$	1	1	1	1	1	1	3
1	0	0	0	0	0	0	2
0							

Node:
126142143374373410413415417 XYZ Removed? x x x x x x x $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}$

Node:	126142	143	374	373	410	413	415	417	$X Y Z$
Removed?	$x \quad x$	X	X	X	X	X		X	X
In-degree:	00	2	1	1	1	1	1	1	3
		1	0	0	0	0	0	0	2
		0							1
Fall 2013			E373: D	Data Struc	ctures \&	\& Algori	ithms		0

Notice

- Needed a vertex with in-degree 0 to start
- Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
- Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```


Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}\right)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that ($\mathbf{v}, \mathbf{u})$ in \mathbf{E}), decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
        v = dequeue();
        put v next in output
        for each w adjacent to v {
            w.indegree--;
            if(w.indegree==0)
            enqueue(v);
        }
}
```


Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v) ;
    }
}
```

- What is the worst-case running time?
- Initialization: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (assuming adjacenty list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$ - much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node \mathbf{v}, find all nodes reachable from \mathbf{v} (i.e., there exists a path from \mathbf{v})

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
- Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if(u is not marked) {
        mark u
                pending.add(u)
            }
    }
}
```


Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: explore areas closer to the start node first

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see"

DFS (Node start) \{ mark and process start for each node u adjacent to start if u is not marked DFS (u)

- A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see" DFS2 (Node start) \{

initialize stack s to hold start mark start as visited while(s is not empty) \{ next = s.pop() // and "process" for each node u adjacent to next if (u is not marked) mark u and push onto s
\}
\}
- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see" BFS (Node start) \{

initialize queue q to hold start mark start as visited while (q is not empty) \{
next = q.dequeue() // and "process"
for each node u adjacent to next if (u is not marked)
mark u and enqueue onto q
\}
\}
- A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

