CSE373: Data Structures \& Algorithms Lecture 20: Beyond Comparison Sorting

Kevin Quinn
Fall 2015

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

$\begin{aligned} & \text { Simple } \\ & \text { algorithms: } \\ & \mathbf{O}\left(n^{2}\right) \end{aligned}$	Fancier algorithms: $\mathbf{O}(n \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: $O(n)$	Handling huge data sets
Selection sort	Merge sort		Radix sort	sorting
Shell sort	Quick sort			

How Fast Can We Sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: we know that this is impossible
- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have n elements to sort
- For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, $\boldsymbol{n}=3$

$$
\begin{array}{lll}
a[0]<a[1]<a[2] & a[0]<a[2]<a[1] & a[1]<a[0]<a[2] \\
a[1]<a[2]<a[0] & a[2]<a[0]<a[1] & a[2]<a[1]<a[0]
\end{array}
$$

- In general, n choices for least element, $n-1$ for next, n-2 for next, \ldots - $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n ! possible answers
- Starts "knowing nothing", "anything is possible"
- Gains information with each comparison
- Intuition: Each comparison can at best eliminate half the remaining possibilities
- Must narrow answer down to a single possibility
- What we can show:

Any sorting algorithm must do at least (1/2)nlog $n-(1 / 2) n$
(which is $\Omega(n \log n)$) comparisons

- Otherwise there are at least two permutations among the n ! possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong [incorrect algorithm]

Optional: Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
- Eventually does a first comparison "is $a<b$?"
- Can use the result to decide what second comparison to do
- Etc.: comparison k can be chosen based on first $k-1$ results
- Can represent this process as a decision tree
- Nodes contain "set of remaining possibilities"
- Root: None of the n ! options yet eliminated
- Edges are "answers from a comparison"
- The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

Optional: One Decision Tree for $n=3$

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree

Optional: Example if $a<c<b$

Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
- (We assume no duplicate elements)
- (Would have 1 outcome if algorithm asks redundant questions) This means that poorly implemented algorithms could yield deeper trees (categorically bad)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n ! answers
- Each answer is a different leaf
- So the tree must be big enough to have n ! leaves
- Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n ! leaves
- So no algorithm can have worst-case running time better than the height of a tree with n ! leaves
- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Optional: Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n ! leaves
- A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n ! leaves has height $\Omega(n \log n)$
- Height could be more, but cannot be less
- Factorial function grows very quickly
- Conclusion: Comparison sorting is $\Omega(n \log n)$
- An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

Optional: Height lower bound

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :

$$
\begin{array}{rlrl}
h & \geq \log _{2}(n!) & & \text { property of binary trees } \\
& =\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) & & \text { definition of factorial } \\
& =\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 & & \text { property of logarithms } \\
& \geq \log _{2} n+\log _{2}(n-1)+\ldots+\log _{2}(n / 2) & \text { drop smaller terms }(\geq 0) \\
& \geq \log _{2}(n / 2)+\log _{2}(n / 2)+\ldots+\log _{2}(n / 2) & \text { shrink terms to } \log _{2}(n / 2) \\
& =(n / 2) \log _{2}(n / 2) & & \text { arithmetic } \\
& =(n / 2)\left(\log _{2} n-\log _{2} 2\right) & & \text { property of logarithms } \\
& =(1 / 2) \log _{2} n-(1 / 2) n & & \text { arithmetic } \\
& =" \Omega(n \log n) & &
\end{array}
$$

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

$\begin{gathered} \text { Simple } \\ \text { algorithms: } \\ \mathbf{O (n ^ { 2 })} \end{gathered}$	Fancier algorithms: $\mathbf{O}(\boldsymbol{n} \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized gorithm: $O(n)$	Handling huge data sets
Insertion sort Selection sort Shell sort	Heap sort	Bucket sort Radix sort		External sorting
	Quick sort (avg)			
Shell sort	...			
		How???		
		- Change more th	e model - as "compare(a,b	

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
- Create an array of size K
- Put each element in its proper bucket (a.k.a. bin)
- If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

- Example:

K=5
input (5,1,3,4,3,2,1,1,5,4,5)
output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

- Overall: $\mathbf{O}(n+K)$
- Linear in n, but also linear in K
- $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
- We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
- Wasted space; wasted time during linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in $O(1)$ (at beginning, or keep pointer to last element)

count array				
1	\square			
:---				

- Example: Movie ratings; scale 1-5;1=bad, 5=excellent Input=

5: Casablanca
3: Harry Potter movies
5: Star Wars Original Trilogy
1: Rocky V
-Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
-Easy to keep 'stable'; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
- Examples will use 10 because we are used to that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit
- Keeping sort stable
- Do one pass per digit
- Invariant: After k passes (digits), the last k digits are sorted

Example

Radix $=10$
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline & 721 & & 3 & & & & \begin{array}{l}537 \\ 67\end{array} & 478 & 9 \\ 38\end{array}\right)$

Input: 478

721
3
38
143
67

First pass:
Order now: 721 bucket sort by ones digit

143
537

Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = "Digits": P
Work per pass is 1 bucket sort: $O(B+n)$
Total work is $\boldsymbol{O}(P(B+n))$
Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
- Run-time proportional to: $15^{*}(52+n)$
- This is less than n log n only if $n>33,000$
- Of course, cross-over point depends on constant factors of the implementations
- And radix sort can have poor locality properties

Sorting massive data

- Need sorting algorithms that minimize disk access time:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- Mergesort can leverage multiple disks

Last Slide on Sorting

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- Selection sort, Insertion sort (latter linear for mostly-sorted)
- Good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
- Heap sort, in-place but not stable nor parallelizable
- Merge sort, not in place but stable and works as external sort
- Quick sort, in place but not stable and $O\left(n^{2}\right)$ in worst-case
- Often fastest, but depends on costs of comparisons/copies
- $\boldsymbol{\Omega}(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
- Bucket sort good for small number of possible key values
- Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

