CSE373: Data Structures \& Algorithms Lecture 9: Binary Heaps, Continued

Kevin Quinn

Fall 2015

A priority queue is just an abstraction for an ordered queue.
A binary heap is a simple and concrete implementation of a priority queue It's just one of many possible implementations!

Review

- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- O (height-of-tree) $=O(\log n)$ insert and deleteMin operations
- insert: put at new last position in tree and percolate-up
- deleteMin: remove root, put 'last' element at root and percolate-down
- But: tracking the "last position" is painful and we can do better

Array Representation of Binary Trees

Starting at node i
left child: i*2
right child: i*2+1
parent: i/2
(wasting index 0 is convenient for the index arithmetic) implicit (array) implementation:

	A	B	C	D	E	F	G	H	I	J	K	L		
0	1	2	3	$\dot{4}+$	5	6	7	$\begin{gathered} 8 \\ \text { left } \end{gathered}$	9	10	11	12		13

http://xkcd.com/163

Judging the array implementation

Positives:

- Non-data space is minimized: just index 0 and unused space on right
- In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
- Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Negatives:

- Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

Pseudocode: insert

```
void insert(int val) {
    if(size == arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

```
int percolateUp(int hole,int val) {
    while(hole > 1 &&
            val < arr[hole/2])
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    }
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.

	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
        (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```
int percolateDown(int hole,int val) {
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right]
        || right > size)
        target = left;
        else
        target = right;
    if(arr[target] < val) {
        arr[hole] = arr[target];
        hole = target;
    } else
        break;
    }
    return hole;
}
```

	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{8 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 5}$	$\mathbf{9 9}$	$\mathbf{7 0 0}$	$\mathbf{5 0}$				
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Fall 2015													

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{1 6}$						
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{1 6}$	$\mathbf{3 2}$					
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$				
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 9}$			
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 9}$	$\mathbf{1 0 5}$		
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 9}$	$\mathbf{1 0 5}$	$\mathbf{4 3}$	
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,69,105,43,2$
2. deleteMin

	$\mathbf{2}$	$\mathbf{3 2}$	$\mathbf{4}$	$\mathbf{6 9}$	$\mathbf{1 0 5}$	$\mathbf{4 3}$	$\mathbf{1 6}$
0	1	2	3	4	5	6	7

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value. Remember lower priority value is *better* (higher in tree).
- Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value.
- Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue.
- Percolate up to top and removeMin

Running time for all these operations?

Build Heap

- Suppose you have n items to put in a new (empty) priority queue
- Call this operation buildHeap
- n distinct inserts works (slowly)
- Only choice if ADT doesn't provide buildHeap explicitly
- O($n \log n$)
- Why would an ADT provide this unnecessary operation?
- Convenience
- Efficiency: an $O(n)$ algorithm called Floyd's Method
- Common issue in ADT design: how many specialized operations

Floyd's Method

1. Use n items to make any complete tree you want

- That is, put them in array indices $1, \ldots, n$

2. Treat it as a heap and fix the heap-order property

- Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```


Example

- In tree form for readability
- Purple for node not less than descendants
- heap-order problem
- Notice no leaves are purple
- Check/fix each non-leaf bottom-up (6 steps here)

Example

- Happens to already be less than children (er, child)

Example

- Percolate down (notice that moves 1 up)

Example

- Another nothing-to-do step

Example

- Percolate down as necessary (steps 4a and 4b)

Example

Example

But is it right?

- "Seems to work"
- Let's prove it restores the heap property (correctness)
- Then let's prove its running time (efficiency)

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```


Correctness

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Loop Invariant: For all $\mathbf{j > i}, \operatorname{arr}[j]$ is less than its children

- True initially: If $j>\operatorname{size} / 2$, then j is a leaf
- Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Better argument: buildHeap is $O(n)$ where n is size

- size/2 total loop iterations: O(n)
- $1 / 2$ the loop iterations percolate at most 1 step
- $1 / 4$ the loop iterations percolate at most 2 steps
- $1 / 8$ the loop iterations percolate at most 3 steps
- $((1 / 2)+(2 / 4)+(3 / 8)+(4 / 16)+(5 / 32)+\ldots)<2$ (page 4 of Weiss)
- So at most 2 (size/2) total percolate steps: $O(n)$

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in $O(n \log n)$ worst case
- Worst case is inserting better priority values later
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
- Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
- Correctness:
- Non-trivial inductive proof using loop invariant
- Efficiency:
- First analysis easily proved it was $O(n \log n)$
- Tighter analysis shows same algorithm is $O(n)$

What we are skipping

- merge: given two priority queues, make one priority queue
- How might you merge binary heaps:
- If one heap is much smaller than the other?
- If both are about the same size?
- Different pointer-based data structures for priority queues support logarithmic time merge operation (impossible with binary heaps)
- Leftist heaps, skew heaps, binomial queues
- Worse constant factors
- Trade-offs!

