Design Decision: Lazy Deletion

Lazy Deletion: Rather than deleting a node from
a tree, merely mark it as being deleted
— operate around it as usual
— (just don’t return it as the result of a Fi nd() op)

Del ete(T, 2); (6)
Del ete(T, 20);
Del ete(T,11); (4 \
Q © @
566

S e IS o B o IS B o S o IS o B o S o S o B o IS o < B o < IR < BN

CSE 373: Self-Adjusting Trees
(“Cookbook Data Structures”)

Chapter 4
(and Section 12.2)




Motivation

All Binary Search Tree Operations are O(d)
— d can range from log N to N
— generally, d is O(log N)
— statistically, d is O(log N) on average

— but, for common(?) insertion orders, d will be O(N)
i.e., inserting sorted lists in order

A Solution

Self-Adjusting Binary Search Trees: BST’s that
automatically rearrange themselves to keep
operations O(log N)

* AVL Trees

¢ Splay Trees
¢ Red-Black Trees




AVL Trees

The idea: A balance condition is placed on the tree.
Whenever an i nsert () breaks the condition,
we rearrange the tree to fix it.

What should the balance condition be?

Rotations

Rotation: a simple way of rearranging a tree
without breaking the binary search property




AVL Tree Strategy

Balance Condition: Every node’s left and right
subtrees must have a height difference of no
more than one

Two Cases of Bad Inserts

Case I1




Fixing Case I

(I g I o S T e T B o B o B B o I o S S 2 T o B o BN

m =4 23
rotate

UW, Spring 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Trying to Fix Case 11

(I g I o S T e T B o B o B B o I o S S 2 T o B o BN

Kiﬂ) = KZX
rotate

UW, Spring 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain




Fixing Case II

I
double-rotate

AVL Tree Summary

* Keep every node’s subtrees “almost balanced”

¢ When insertions break the “almost balanced”
condition, use rotations to fix things up

* Use lazy deletion to keep things simple
¢ All operations are O(log N)

* Implementation Cost:
— must store depth of each node’s child subtrees
— must implement 4 cases for bad insertion




Splay Trees

* Every time a node is accessed, rotate it to the
top of the tree no matter what

e Over time, trees tend to get shallower because
rotations don’t make the tree any deeper

* Result: Although any one operation may
require O(N) time, a series of k operations is
guaranteed to be O(k log N) — amortized analysis

* Benefits:
— no need to store depths of nodes’ subtrees

Red-Black Trees

Red -Black Trees: Binary Search Trees with the
following properties:
— every node is colored either red or black
— the root is always black
— if anode is red, its children must be black

— every path from a node to a NULL pointer must
contain the same number of black nodes




Example Red-Black Tree

Intuitively. ..
— every path from root to leaf has same number of black nodes

— though they may have different # red nodes, alternate at worst
— Thus, d =2log(N+1) =O(log N)

Inserting into Red-Black Trees

Insert(T,0);
Insert(T,3);
I nsert (T, 22);
I nsert (T, 23);
I nsert (T, 24);




