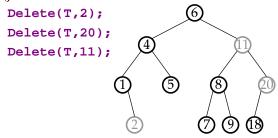
Design Decision: Lazy Deletion

Lazy Deletion: Rather than deleting a node from a tree, merely *mark* it as being deleted

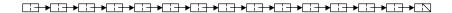
- operate around it as usual
- (just don't return it as the result of a **Find()** op)



UW, Spring 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

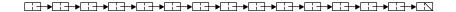


CSE 373: Self-Adjusting Trees

("Cookbook Data Structures")

Chapter 4

(and Section 12.2)



Motivation

All Binary Search Tree Operations are O(*d*)

- -d can range from $\log N$ to N
- generally, d is $O(\log N)$
- statistically, d is O(log N) on average
- but, for common(?) insertion orders, *d* will be O(*N*)
 i.e., inserting sorted lists in order

UW, Spring 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

A Solution

Self-Adjusting Binary Search Trees: BST's that automatically rearrange themselves to keep operations O(log *N*)

- AVL Trees
- Splay Trees
- Red-Black Trees

UW, Spring 1999

CSE 373 – Data Structures and Algorithms

AVL Trees

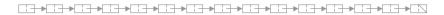
The idea: A balance condition is placed on the tree. Whenever an **insert()** breaks the condition, we rearrange the tree to fix it.

What should the balance condition be?

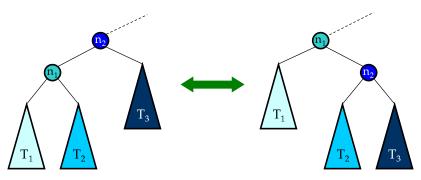
UW, Spring 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain



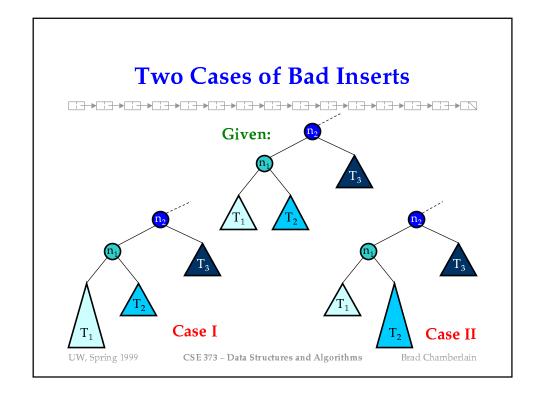
Rotation: a simple way of rearranging a tree without breaking the binary search property

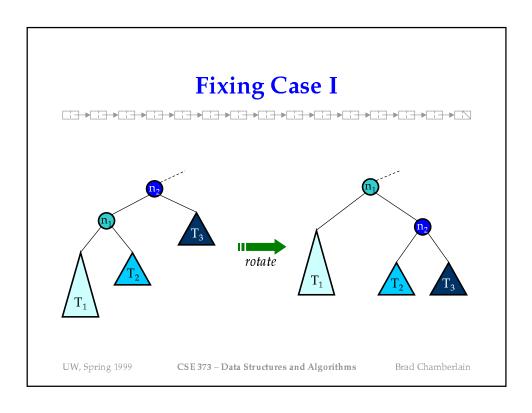


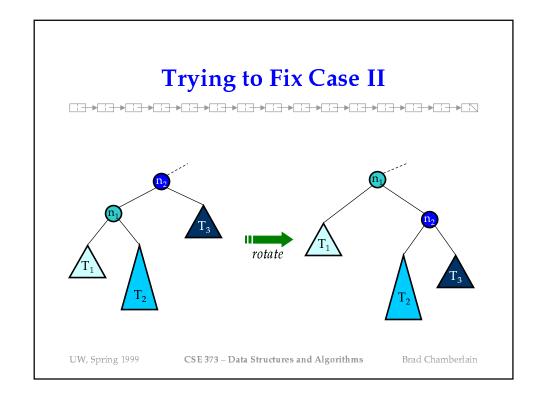
UW, Spring 1999

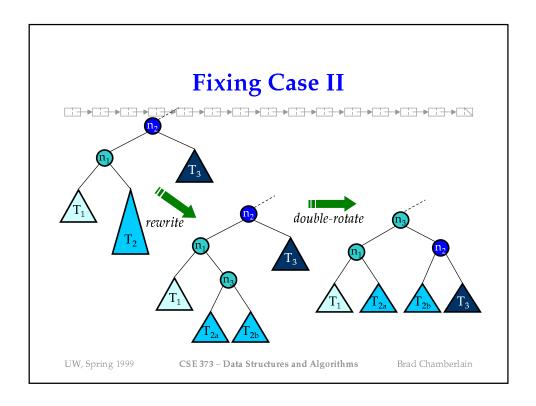
CSE 373 – Data Structures and Algorithms

AVL Tree Strategy Balance Condition: Every node's left and right subtrees must have a height difference of no more than one Output Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Output Description: Every node's left and right subtrees must have a height difference of no more than one Description: Every node's left and right subtrees must have a height difference of no more than one Description: Every node's left and right subtrees must have a height difference of no more than one Description: Every node's left and right subtrees must have a height difference of no more than one Description: Every node's left and right subtrees must have a height difference of no more than one Description: Every node's left and right subtrees must have a height difference of node more than one more than one









AVL Tree Summary

- Keep every node's subtrees "almost balanced"
- When insertions break the "almost balanced" condition, use rotations to fix things up
- Use lazy deletion to keep things simple
- All operations are $O(\log N)$
- Implementation Cost:
 - must store depth of each node's child subtrees
 - must implement 4 cases for bad insertion

UW, Spring 1999

CSE 373 – Data Structures and Algorithms

Splay Trees

- Every time a node is accessed, rotate it to the top of the tree no matter what
- Over time, trees tend to get shallower because rotations don't make the tree any deeper
- Result: Although any one operation may require O(N) time, a series of k operations is guaranteed to be $O(k \log N)$ amortized analysis
- Benefits:
 - no need to store depths of nodes' subtrees

UW, Spring 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Red-Black Trees

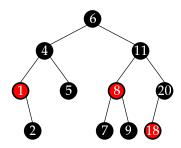
Red -Black Trees: Binary Search Trees with the following properties:

- every node is colored either red or black
- the root is always black
- if a node is red, its children must be black
- every path from a node to a NULL pointer must contain the same number of black nodes

UW, Spring 1999

CSE 373 – Data Structures and Algorithms

Example Red-Black Tree



Intuitively...

- every path from root to leaf has same number of black nodes
- though they may have different # red nodes, alternate at worst
- Thus, $d = 2\log(N+1) = O(\log N)$

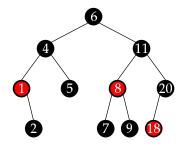
UW, Spring 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Inserting into Red-Black Trees

Insert(T,0);
Insert(T,3);
Insert(T,22);
Insert(T,23);
Insert(T,24);



UW, Spring 1999

CSE 373 – Data Structures and Algorithms