CSE 373: Hash Tables
(using them and dealing with collisions)

Chapter 5

Hash Table Sets: Use

Hash tables can be used to store sets
e.g., the set of all departments represented in CSE 373

typedef enum { ACVMS, ARCH, ART, BICCHM ..} dept;

Approach: Just store the departments themselves
in the hash table:
— to add a new department, | nsert () it
— to see if a department is represented, Fi nd() it

Hash Table Sets: Implementation

Data Structure
typedef struct _HashTabl eStruct {
int tabl esize;
dept *dat a;
} HashTabl eStruct;
typedef HashTabl eStruct *HashTabl e;

Sample Operation
I nsert (HashTabl e T, dept D)
¢ hash D to get an index, I
¢ check whether data[I] is empty (or already storing D)
¢ if 50, set data[I] = D
¢ else deal with the conflict

Hashing Records

Goal: store the CSE 373 class list as a Hash Table

typedef struct _student {
nane first, |ast;
int UWD,
nane email ;
char col |l ege;
dept mgj or;
int class;

} student;

Implementation:

Same as set, but array of students rather than
departments

Hashing Records: Design Decisions

Design Decisions:
What to hash on?

¢ last name?

¢ first name?

¢ student ID?

* email?

¢ some combination thereof?
How to look someone up?

¢ supply entire record?

¢ supply just a single field?

Another Hash Table Interface

Some hash tables separate key from data:
voi d I nsert (HashTabl e, KeyType, Dat aType) ;
Dat aType Fi nd(HashTabl e, KeyType);

Question: How to implement a database?

Goals:
— store records as in class list example
— be able to search based on any field (or some subset)
— minimize space requirements

Load Factor

Load Factor: Density of hash table, A

EE

ART

ACMS

A=3/7

Ideally, we’d like A =1.0

A = # of stored elements /table size

Dealing with Collisions

What can we do when two keys hash to the same

slot?

I nsert (T, EE)

AEE) =2

EE

I nsert (T, ACVB)

AACMS) =5

EE

ACMS

I nsert (T, SPAN)

ASPAN) =2

T

ACMS

Solution: Separate Chaining

Idea: At each position, store a list of the data that
hashes to that position

g

L BE [J-[SPANTN

[ACMS[\]

Separate Chaining: Implementation

typedef struct _HashTable {
int tabl esize;
Li st *datali st;
} HashTabl e;

I nsert ()
¢ hash key
¢ see if key is already in list (Fi nd(datal i st[I], .)))
¢ if not, insert it into the list (| nsert (datal ist[I], ..))

(Note that we could replace lists with BSTs, hash tables)

Solution 2: Rehashing

Grow the size of the hash table as it gets full

But when?
— whenever there is a collision?
— whenever the A reaches 1.0?
— whenever A reaches k?
— whenever n% of the slots are in use?

Can we simply real | oc() the data array?

Running Time of Rehashing

Assume that we’ll rehash whenever A = 1.0...
— starting with an array of size 11

— approximately doubling the size of the array
(use the next prime larger than 2 x tablesize)

— what is the total running time of inserting n keys?

