
(c) Copyright Larry Snyder 1998

Translation Lookaside Buffer

Virtual Memory would not be very effective if every
memory address had to be translated by looking up

the associated physical page in memory. The solution
is to cache the recent translations in a Translation

Lookaside Buffer (TLB)

(c) Copyright Larry Snyder 1998

Addressing The Cache

Since the program is generating virtual addresses, and
the memory uses physical addresses, there are two
solutions to the problem of addressing the cache:

� Physically addressed cache: Translate virtual address
before cache reference

� Virtually addressed cache: Reference cache directly
and translate only on a cache miss, which is when
physical memory must be referenced

It’s a no brainer, right?

(c) Copyright Larry Snyder 1998

Translation Lookaside Buffer

To save time in virtual to physical address translation,
temporal locality is exploited by keeping a small cache
of the most recent virtual-physical mappings.

Block size 1-2 page-table entries
Hit Time 1/2-1 clock cycle
Miss penalty 10-30 clock cycles
Miss rate 0.01%-1%
Size 32-1024 entries

(c) Copyright Larry Snyder 1998

Translation Lookaside Buffer

Page Table
1
1
0
1
1
0
1
1
0
1

Layout in Physical MemoryV
0000

1011

0001

1010

0010

1001

0011

1000
0111

0100

0110
0101

1000
0100

0111
0001

0011

1010
0010

1 0100
1010

1 1000
1

1 0011

......TLB

Tag PhysPage

(c) Copyright Larry Snyder 1998

DEC 3100
Cache

00 ... 0000
00 ... 0001
. . .

11 ... 1110
11 ... 1111

V Tag Data

31 30 1 0

20

=

32

Data

Tag
Index

1416

DirtyTag Physcial Page Number

31 30 1 012 11

20
=

TLB
Hit

1220
Virtual Page Address

V

Cache
Hit

Offset

Byte
Offset

AND

=
=
=
=

Cache Index
Physical page number
Physical address tag

Physical Address
Page Offset

(c) Copyright Larry Snyder 1998

Logic of Memory Reference for 3100

Virtual address TLB access

TLB Hit?

No

Write Protect
Exception

Cache
 Hit?

Deliver data
to CPU

TLB miss
interrupt

No Yes

Yes

Yes

No

Try to read data
from cache

Cache miss stall

4

Write data into cache,
update the tag, and put
the data and the address
into the write buffer.

Write
Access
 Bit=1

Write ?

YesNo

(c) Copyright Larry Snyder 1998

TLB Miss Means Either ...

� The page is present ==> only a TLB entry must be created
� The page is not present (i.e. page table entry for the virtual

address has 0 valid bit), a page fault exception is signaled
• The exception flushed the instruction, put the PC in the exception

program counter (EPC) and interrupted the processor.

• The operating system, checking the cause, discovers a page fault was
signaled, and knowing this is a time consuming operation, saves the
state: GP and FP registers, Page Table Address, EPC & Cause.

• What address is needed:

– Instruction Page Fault, find address in EPC.
– Data Page Fault, compute address from Inst.

• OS then:

– Finds disk address in page table entry.
– Chooses victim to replace; writes back if dirty bit set.

– Initiates read of disk block.

(c) Copyright Larry Snyder 1998

Protection Through Virtual Memory

A multi-user environment requires protection

Virtual address spaces are logically separate as long as they never
reference the same physical page

Operating System sets page tables

Two execution modes: user/supervisor

Page table address must be supervisor readable

Sharing can be assisted with "write protection" or read/write bits

Context switching can be assisted when there is a TLB by extending
the tag field of TLB entry with a process ID

Matches require both the address and the ID to match

(c) Copyright Larry Snyder 1998

Exercises
Memory:

 Address Contents
000000ac Page Table Address: 0000e0a8
000000b0
000000b4

. . .
000080ac
000080b0
000080b4

. . .
0000e0ac 80000000
0000e0b0 8000000e
0000e0b4 8000a0b4

Assuming 4K pages and "big-endian" addressing, i.e. the 0 byte of a word is the msb end,
what are the contents of the memory location at the virtual address 000020b7?

The TLB physical page number for tag 00002 would be?

Assuming 4K pages and assuming the physical address from the TLB is 000000b4, what is
the tag field?

