
intro

What is Computer Architecture?

Architecture

• abstraction of the hardware for the programmer

• instruction set architecture
• instructions:

• operations
• operands, addressing the operands
• how instructions are encoded

• storage locations for data
• registers: how many & what they are used for
• memory: its size & how it is accessed

• I/O devices & how to access them
• software conventions:

• subroutine calls: who saves the registers, which
ones are saved

• passing parameters: in registers? on the stack?

• the interface between the software & hardware



intro

What is Computer Organization?

Organization or Microarchitecture

• basic components of a computer
• on the CPU (ALU, registers, PC, etc.)
• memory (levels of the cache hierarchy)

• how they operate

• how they are connected together

Organization is mostly invisible to the programmer

• today some components are considered part of the
architecture

• why? because a programmer can get better performance if
he/ she knows the structure

• for example: the caches, the pipeline structure



intro

Separate Architecture & its Organization

Why separate architecture & organization?

• many implementations for 1 architecture family of
implementations: sequences of machines that have the
same ISA

• IBM 360/85, 360/91, 370s
• MIPS R2000, R3000, R10000
• Intel x86, Pentium, Pentium-Pro
• DEC Alpha 21064, 21164, 21264

• different points in the cost/performance curve

• binary compatible: same software could run on all machines

• open architecture: third party software



intro

Different Architectures

So why have different architectures?

• different architecture philosophies & therefore different
styles
• support high level language operations: CISC
• support basic primitive operations: RISC

• different application areas for example, multimedia
instructions

• “ours is better” within the same style



intro

Basic Architectural Design Principles
Design for the common case

common cases in hardware, uncommon cases in software

• basic floating point operations in hardware
software function for the cosine routine

• memory access in hardware
trap to software for a page fault

Smaller is faster
must have a good reason for adding an instruction, register,etc.

memory hierarchy: registers, caches, main memory

Keep it simple, stupid : the KISS principle simplicity favors
regularity, regularity leads to smaller designs and shorter design
time

RISC instructions are all 32 bits

Good design demands compromise

• trade-off in instruction format between
- the size of the register file (how many bits are needed to
specify a register) &
- the number of operations (how many bits are needed to
specify an instruction)

• trade-off between register size & cycle time



intro

Assembly Language
Symbolic form of computer machine language

• advantages for us
• learn at the machine level what a computer does
• thorough understanding through a hands-on experience

• where assembly language is used in practice
• things that aren’t expressible in a high-level language
for example, subroutine linkage
• privileged tasks
for example, programs that need access to protected registers (I/O)
• size-critical applications
for example, programs for embedded processors
• time-critical applications
for example, real-time applications, OpenGL library

• why assembly language is not widely used
• lower programmer productivity

for example, longer coding time, more debugging
• compilers can produce almost the same quality code
• not portable across architectures



intro

Still Lower
Implementation

• design of organizational components or microarchitecture

Technology

• semiconductor material for example, silicon

• circuit technology (how build gates from transistors) for example,
CMOS

• packaging for example, pin-grid array

• generation for example, vacuum tubes, VLSI



intro

A Simplified Machine Model

Main
Memory I/O

System bus

Level 2
cache

I-cache d-cache

GPRs

FPRs

IFUs

FPUs

PC Buffer
/

Control


