What is Computer Architecture?

Architecture

of the hardware for the programmer

. instruction set architecture

e the
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instructions:

e operations

e operands, addressing the operands

 how instructions are encoded

storage locations for data

* registers: how many & what they are used for
e memory: its size & how it is accessed

I/O devices & how to access them

software conventions:

« subroutine calls: who saves the registers, which
ones are saved

e  passing parameters: in registers? on the stack?
between the software & hardware



What is Computer Organization?

Organization or Microarchitecture
e basic components of a computer
« onthe CPU (ALU, registers, PC, etc.)
« memory (levels of the cache hierarchy)
 how they operate
 how they are connected together

Organization is mostly invisible to the programmer
» today some components are considered

« why? because a programmer can get better performance if

he/ she knows the structure
« for example: the caches, the pipeline structure
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Separate Architecture & its Organization

Why separate architecture & organization?

« many implementations for 1 architecture of
implementations: sequences of machines that have the
same ISA

e |IBM 360/85, 360/91, 370s

e MIPS R2000, R3000, R10000

. Intel x86, Pentium, Pentium-Pro
« DEC Alpha 21064, 21164, 21264

o different points in the cost/performance curve
* binary compatible: same software could run on all machines
e open architecture: third party software
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Different Architectures

So why have different architectures?

« different architecture philosophies & therefore different
styles

« support high level language operations: CISC
e support basic primitive operations: RISC

« different application areas for example, multimedia
Instructions

 “ours is better” within the same style
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Basic Architectural Design Principles

Design for the common case

common cases in hardware, uncommon cases in software

* Dbasic floating point operations in hardware
software function for the cosine routine

¢ memory access in hardware
trap to software for a page fault

Smaller is faster
must have a good reason for adding an instruction, register,etc.

memory hierarchy: registers, caches, main memory

Keep it simple, stupid : the KISS principle simplicity favors
regularity, regularity leads to smaller designs and shorter design
time

RISC instructions are all 32 bits

Good design demands compromise

e trade-off in instruction format between
- the size of the register file (how many bits are needed to
specify a register) &
- the number of operations (how many bits are needed to
specify an instruction)

« trade-off between register size & cycle time
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Assembly Language

Symbolic form of computer machine language
 advantages for us
 learn at the machine level what a computer does
« thorough understanding through a hands-on experience

« where assembly language is used in practice

 things that aren’t expressible in a high-level language
for example, subroutine linkage

» privileged tasks
for example, programs that need access to protected registers (1/O)

» size-critical applications
for example, programs for embedded processors

 time-critical applications
for example, real-time applications, OpenGL library

« why assembly language is not widely used

 |ower programmer productivity
for example, longer coding time, more debugging

« compilers can produce almost the same quality code
 not portable across architectures

intro



Still Lower

Implementation
« design of organizational components or microarchitecture

Technology
« semiconductor material for example, silicon

« circuit technology (how build gates from transistors) for example,
CMOS

» packaging for example, pin-grid array
e generation for example, vacuum tubes, VLSI
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A Simplified Machine Model
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