What is Computer Architecture?

Architecture

of the hardware for the programmer

. instruction set architecture

e the

intro

instructions:

e operations

e operands, addressing the operands

 how instructions are encoded

storage locations for data

* registers: how many & what they are used for
e memory: its size & how it is accessed

I/O devices & how to access them

software conventions:

« subroutine calls: who saves the registers, which
ones are saved

e passing parameters: in registers? on the stack?
between the software & hardware

What is Computer Organization?

Organization or Microarchitecture
e basic components of a computer
« onthe CPU (ALU, registers, PC, etc.)
« memory (levels of the cache hierarchy)
 how they operate
 how they are connected together

Organization is mostly invisible to the programmer
» today some components are considered

« why? because a programmer can get better performance if

he/ she knows the structure
« for example: the caches, the pipeline structure

intro

Separate Architecture & its Organization

Why separate architecture & organization?

« many implementations for 1 architecture of
implementations: sequences of machines that have the
same ISA

e |IBM 360/85, 360/91, 370s

e MIPS R2000, R3000, R10000

. Intel x86, Pentium, Pentium-Pro
« DEC Alpha 21064, 21164, 21264

o different points in the cost/performance curve
* binary compatible: same software could run on all machines
e open architecture: third party software

intro

Different Architectures

So why have different architectures?

« different architecture philosophies & therefore different
styles

« support high level language operations: CISC
e support basic primitive operations: RISC

« different application areas for example, multimedia
Instructions

 “ours is better” within the same style

intro

Basic Architectural Design Principles

Design for the common case

common cases in hardware, uncommon cases in software

* Dbasic floating point operations in hardware
software function for the cosine routine

¢ memory access in hardware
trap to software for a page fault

Smaller is faster
must have a good reason for adding an instruction, register,etc.

memory hierarchy: registers, caches, main memory

Keep it simple, stupid : the KISS principle simplicity favors
regularity, regularity leads to smaller designs and shorter design
time

RISC instructions are all 32 bits

Good design demands compromise

e trade-off in instruction format between
- the size of the register file (how many bits are needed to
specify a register) &
- the number of operations (how many bits are needed to
specify an instruction)

« trade-off between register size & cycle time

intro

Assembly Language

Symbolic form of computer machine language
 advantages for us
 learn at the machine level what a computer does
« thorough understanding through a hands-on experience

« where assembly language is used in practice

 things that aren’t expressible in a high-level language
for example, subroutine linkage

» privileged tasks
for example, programs that need access to protected registers (1/O)

» size-critical applications
for example, programs for embedded processors

 time-critical applications
for example, real-time applications, OpenGL library

« why assembly language is not widely used

 |ower programmer productivity
for example, longer coding time, more debugging

« compilers can produce almost the same quality code
 not portable across architectures

intro

Still Lower

Implementation
« design of organizational components or microarchitecture

Technology
« semiconductor material for example, silicon

« circuit technology (how build gates from transistors) for example,
CMOS

» packaging for example, pin-grid array
e generation for example, vacuum tubes, VLSI

intro

intro

A Simplified Machine Model

Malin

Memory

I

/O

System bus

I

Level 2
cache

I

|l-cache

d-cache

PC | |FUs | Buffer

GPRs

/
Control

FPRs

FPUs

