Performance Metrics

Why study performance metrics?
 determine the benefit/lack of benefit of designs

« computer design is too complex to intuit performance &
performance bottlenecks

¢ have to be careful about what you mean to measure & how you
measure it

What you should get out of this discussion
¢ good metrics for measuring computer performance

« what they should be used for
« what metrics you shouldn’t use & how metrics are misused
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Performance of Computer Systems

Many different factors to take into account when determining
performance:

* Technology

« circuit speed (clock, MHz)

« processor technology (how many transistors on a chip)
« Architecture & microarchitecture

« type of architecture (RISC or CISC)

« configuration of the memory hierarchy

* speed & capability of /0O devices

* number of processors in the system
» Software

¢ quality of the compilers

¢ organization & quality of OS, databases, etc.
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“Principles” of Experimentation

Meaningful metrics
execution time & component metrics that explain it

Reproducibility
machine configuration, compiler & optimization level, OS, input

Real programs
no toys, kernels, synthetic programs
SPEC is the norm (integer, floating point, graphics, webserver)
TPC-B, TPC-C & TPC-D for database transactions

Simulation
long executions, to mimic behavior

usually applications only; some OS simulation
simulator “validation” & internal checks for accuracy
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Metrics that Measure Performance

Raw speed : peak performance (never attained)

Execution time : time to execute one program from beginning to end
« the “performance bottom line”
« wall clock time, response time
» Unix time function: 13.7u 23.6s 18:27 3%

Throughput : total amount of work completed in a given time
« instructions / cycle
 transactions (database) or packets (web servers) / second
« an indication of how well hardware resources are being used

¢ good metrics for chip designers or managers of computer
systems

(Often improving execution time will improve throughput & vice
versa.)

Component metrics : subsystem performance, e.g., memory
behavior

< help explain how execution time was obtained
¢ pinpoints performance bottlenecks
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Execution Time

1

Performancey, = ————————
A " ExecutionTime,

Processor A is faster than processor B, i.e.,

ExecutionTime, <ExecutionTimeg

Performance, > Performanceg

Relative Performance

Performance, ExecutionTimeg

Performance; ~ ExecutionTime,

performance of A is n times greater than B
execution time of B is n times longer than A
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CPU Execution Time

The time the CPU spends executing an application
¢ no memory effects
* nol/O
« no effects of multiprogramming

CPUExecutionTime = CPUClockCyclesx clockCycleTime

Cycle time (clock period) is measured in time or rate
« clock cycle time = 1/clock cycle rate

CPUClockCycles

CPUExecutionTime = m

¢ clock cycle rate of 1 MHz 0 cycle time of 1 ps
¢ clock cycle rate of 1 GHz O cycle time of 1 ns
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CPI

CPUCIlockCycles= NumberOfinstructionsx CPI

CPI: average number of clock cycles per instruction
« throughput metric
* component metric, not a measure of performance

« used for processor organization (microarchitectural) studies,
given a fixed compiler & ISA

Can have different CPI's for different classes of instructions
e.g., floating point instructions take longer than integer
instructions

n
CPUCIlockCycles = Z( CP| xC;)
1

where CPI; = CPI for a particular class of instructions

where C; = the number of instructions of the it class that
have been executed

Improving part of the architecture can improve a CP;

¢ Talk about the contribution to CPI of a class of instructions
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CPU Execution Time

CPUExecutionTime =
numberOfinstructions xCPI x clockCycleTime

To measure:
< execution time: depends on all 3 factors
 time the program
« number of instructions: determined by the ISA
« programmable hardware counters
« profiling
« count number of times each basic block is executed &

multiply by the number of instructions in each basic
block

« instruction sampling
e CPI: determined by the ISA & implementation

 simulator: interpret (in software) every instruction &
calculate the number of cycles it takes to simulate it

« clock cycle time: determined by the implementation & process
technology

Factors are interdependent:

* RISC: instructions/program, but decreases CPI &
clock cycle time because the instructions are simple

* CISC: instructions/program, but increases CPI &
clock cycle time because many instructions are more complex
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Metrics Not to Use

MIPS (millions of instructions per second)

instruction count clock rate

execution timex 1?) CPIx 106

intuitive: the higher, the better

instruction set-dependent (even true for similar architectures)
implementation-dependent

compiler technology-dependent

program- & input-dependent

MFLOPS (millions of floating point operations per second)

floating point operations

execution timex 16

+ FP operations are independent of FP instruction implementation
different machines implement different FP operations

different FP operations take different amounts of time

only measures FP code

static metrics (code size)
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Means

Measuring the performance of a workload
« arithmetic : used for averaging execution times

or o O1
Oy time0x =
S on

¢ harmonic : used for averaging rates
n 1

noy " arithmeticMean
i=lrattq

« weighted means: the programs are executed with different
frequencies, for example:
onr o 01
I]thlmei X welghtigx =
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Means

FP Ops Time (secs)
Computer A Computer B Computer|C
program 1 10 1 10 20
program 2 100 1000 100 20
total 1001 110 4
arith mean 500.5 56 20
FP Ops Rate (FLOPS)
Computer Al Computer B Computer|C
program 1 10(¢ 100 10 5
program 2 10 1 L 5
harm mean 2 1.6 5
arith mean 50.1 5.5 5

Computer C is ~25 times faster than A when measuring execution

time

Still true when measuring MFLOPS (a rate) with the harmonic mean

Not true with the arithmetic mean
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Speedup

11

execution tIn']%eforelmprovement
execution tImeafterlmprovement

speedup =

Amdahl's Law :

Performance improvement from speeding up a part of a
computer system is limited by the proportion of time the
enhancement is used.
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