Performance Metrics

Why study performance metrics?
 determine the benefit/lack of benefit of designs

« computer design is too complex to intuit performance &
performance bottlenecks

¢ have to be careful about what you mean to measure & how you
measure it

What you should get out of this discussion
¢ good metrics for measuring computer performance

« what they should be used for
« what metrics you shouldn’t use & how metrics are misused

CSE378 Autumn 2002 1

Performance of Computer Systems

Many different factors to take into account when determining
performance:

* Technology

« circuit speed (clock, MHz)

« processor technology (how many transistors on a chip)
« Architecture & microarchitecture

« type of architecture (RISC or CISC)

« configuration of the memory hierarchy

* speed & capability of /0O devices

* number of processors in the system
» Software

¢ quality of the compilers

¢ organization & quality of OS, databases, etc.

CSE378 Autumn 2002 2

“Principles” of Experimentation

Meaningful metrics
execution time & component metrics that explain it

Reproducibility
machine configuration, compiler & optimization level, OS, input

Real programs
no toys, kernels, synthetic programs
SPEC is the norm (integer, floating point, graphics, webserver)
TPC-B, TPC-C & TPC-D for database transactions

Simulation
long executions, to mimic behavior

usually applications only; some OS simulation
simulator “validation” & internal checks for accuracy

CSE378 Autumn 2002 3

Metrics that Measure Performance

Raw speed : peak performance (never attained)

Execution time : time to execute one program from beginning to end
« the “performance bottom line”
« wall clock time, response time
» Unix time function: 13.7u 23.6s 18:27 3%

Throughput : total amount of work completed in a given time
« instructions / cycle
 transactions (database) or packets (web servers) / second
« an indication of how well hardware resources are being used

¢ good metrics for chip designers or managers of computer
systems

(Often improving execution time will improve throughput & vice
versa.)

Component metrics : subsystem performance, e.g., memory
behavior

< help explain how execution time was obtained
¢ pinpoints performance bottlenecks

CSE378 Autumn 2002 4

Execution Time

1

Performancey, = ————————
A " ExecutionTime,

Processor A is faster than processor B, i.e.,

ExecutionTime, <ExecutionTimeg

Performance, > Performanceg

Relative Performance

Performance, ExecutionTimeg

Performance; ~ ExecutionTime,

performance of A is n times greater than B
execution time of B is n times longer than A

CSE378 Autumn 2002

CPU Execution Time

The time the CPU spends executing an application
¢ no memory effects
* nol/O
« no effects of multiprogramming

CPUExecutionTime = CPUClockCyclesx clockCycleTime

Cycle time (clock period) is measured in time or rate
« clock cycle time = 1/clock cycle rate

CPUClockCycles

CPUExecutionTime = m

¢ clock cycle rate of 1 MHz 0 cycle time of 1 ps
¢ clock cycle rate of 1 GHz O cycle time of 1 ns

CSE378 Autumn 2002

CPI

CPUCIlockCycles= NumberOfinstructionsx CPI

CPI: average number of clock cycles per instruction
« throughput metric
* component metric, not a measure of performance

« used for processor organization (microarchitectural) studies,
given a fixed compiler & ISA

Can have different CPI's for different classes of instructions
e.g., floating point instructions take longer than integer
instructions

n
CPUCIlockCycles = Z(CP| xC;)
1

where CPI; = CPI for a particular class of instructions

where C; = the number of instructions of the it class that
have been executed

Improving part of the architecture can improve a CP;

¢ Talk about the contribution to CPI of a class of instructions

CSE378 Autumn 2002 7

CPU Execution Time

CPUExecutionTime =
numberOfinstructions xCPI x clockCycleTime

To measure:
< execution time: depends on all 3 factors
 time the program
« number of instructions: determined by the ISA
« programmable hardware counters
« profiling
« count number of times each basic block is executed &

multiply by the number of instructions in each basic
block

« instruction sampling
e CPI: determined by the ISA & implementation

 simulator: interpret (in software) every instruction &
calculate the number of cycles it takes to simulate it

« clock cycle time: determined by the implementation & process
technology

Factors are interdependent:

* RISC: instructions/program, but decreases CPI &
clock cycle time because the instructions are simple

* CISC: instructions/program, but increases CPI &
clock cycle time because many instructions are more complex

CSE378 Autumn 2002 8

Metrics Not to Use

MIPS (millions of instructions per second)

instruction count clock rate

execution timex 1?) CPIx 106

intuitive: the higher, the better

instruction set-dependent (even true for similar architectures)
implementation-dependent

compiler technology-dependent

program- & input-dependent

MFLOPS (millions of floating point operations per second)

floating point operations

execution timex 16

+ FP operations are independent of FP instruction implementation
different machines implement different FP operations

different FP operations take different amounts of time

only measures FP code

static metrics (code size)

CSE378 Autumn 2002

Means

Measuring the performance of a workload
« arithmetic : used for averaging execution times

or o O1
Oy time0x =
S on

¢ harmonic : used for averaging rates
n 1

noy " arithmeticMean
i=lrattq

« weighted means: the programs are executed with different
frequencies, for example:
onr o 01
I]thlmei X welghtigx =

CSE378 Autumn 2002 10

Means

FP Ops Time (secs)
Computer A Computer B Computer|C
program 1 10 1 10 20
program 2 100 1000 100 20
total 1001 110 4
arith mean 500.5 56 20
FP Ops Rate (FLOPS)
Computer Al Computer B Computer|C
program 1 10(¢ 100 10 5
program 2 10 1 L 5
harm mean 2 1.6 5
arith mean 50.1 5.5 5

Computer C is ~25 times faster than A when measuring execution

time

Still true when measuring MFLOPS (a rate) with the harmonic mean

Not true with the arithmetic mean

CSE378 Autumn 2002

Speedup

11

execution tIn']%eforelmprovement
execution tImeafterlmprovement

speedup =

Amdahl's Law :

Performance improvement from speeding up a part of a
computer system is limited by the proportion of time the
enhancement is used.

CSE378 Autumn 2002

12

