
CSE378 Autumn 2002 1

 Memory Management

Techniques for:

• bringing in data & instructions from disk when they are needed

• executing programs that are larger than physical memory

• allowing programs to start execution at a location other than
address 0

• allowing programs to reside in noncontiguous memory locations

CSE378 Autumn 2002 2

Evolution in Memory Management

Programs used all physical memory & executed one at a time.

Programmers divided up their programs into overlays

• memory-size (or less) partitions of program and data that would
not be used at the same time

• loaded into memory under user control

⇒ programs larger than physical memory could execute

Multiprogramming

• several programs were memory-resident at the same time

• one executed while another waited for I/O

⇒ better utilization of the CPU

CSE378 Autumn 2002 3

Evolution in Memory Management

Relocation

• programs are compiled & linked wrt address 0

• relocated to some other address in physical memory

• base register : contains the first location of the program

• bounds register : contains the size of the program

• relocating a program address with base & bounds registers

• physical address = base register + program address
• check if physical address is within the bounds

(physical address ≤ base address + bounds value)

• if not, an exception occurs

program A

unallocated space

program C

unallocated space

base register

bounds registerprogram B

(program B is executing)

CSE378 Autumn 2002 4

Evolution in Memory Management

Relocation, cont’d.

• advantages of relocation

• allows multiple programs to reside in memory
• allows a program to reside anywhere in memory by

separating program addresses & physical addresses

• problems with relocation

• memory fragmentation
• unallocated space between programs
• fragmentation get worse as over time (smaller & more

numerous “holes” in memory)
• requires copying to remove the fragments

• still requires overlays for large programs

CSE378 Autumn 2002 5

Virtual Memory

A model (a memory abstraction) to the programmer that:

• a program starts in location 0

• a program extends contiguously in memory

• a program has available to it the entire architectural memory
space (2wordsize bytes):
called the virtual address space

Paging

• implementation for virtual memory

• divide the virtual address space into fixed-size chunks,
called pages

• divide physical memory into chunks of the same size,
called page frames

• provide a mapping between addresses in pages & address in
page frames,
called address translation

• if no mapping exists
(i.e., if a virtual address is on a page that does not have a page
frame in physical memory),
the virtual address’s page is on disk and has to be paged into
memory

CSE378 Autumn 2002 6

Address Translation

Address translation :

• maps addresses in the virtual address space (virtual
addresses) to locations in physical memory (physical
addresses)

• CPU emits a virtual (program-generated) address
• memory has physical addresses

• mapping structures:

• software data structure (page tables) &

• hardware cache (translation lookaside buffer)
(we’ll cover them both later)

• relocation mechanism is fully associative

• a page can reside in any page frame

CSE378 Autumn 2002 7

Address Translation Using Page Tables

Operating systems data structure

• page tables are built & maintained by the OS

• one page table per process

• process A’s virtual addresses will map to different physical
locations than process B’s

• one entry in the page table per (virtual) page:
called a page table entry (PTE)

• PTE fields:

• valid bit : whether the page is mapped into memory or still
resides on disk

• page frame number or disk location

• dirty bit : indicates whether any address on the page has
been written

• reference or use bit : set if this page was used recently

• protection bits : access privilege (read/write/execute) for
user or kernel mode

CSE378 Autumn 2002 8

Page Table Size

Calculating page table size:

An example:

• there are several techniques to reduce the size of the page
tables

number of page table entriesvirtual address space
page size

--=

size of page table number of page table entries size of a PTE×=

2
32

2
12⁄ 2

20
page table entries=

2
20

2
2× 4MB=

CSE378 Autumn 2002 9

Design Trade-offs for Page SIze

Choosing a page size :

• big pages

+ better throughput from disk
+ smaller page tables

- (internal) fragmentation

• small pages

+ lower latency to fetch a page
- larger page tables

(but can use techniques to reduce page table size)

Current page sizes:

• 8KB

• some machines have larger ones too

