
1

5/3/2002 118

Evolution of ISAs

5/3/2002 119

Characterizing ISAs

� Number of operands per instruction:
� how many operands are specified per instruction
� is the number fixed/variable

� Number of addresses per instruction: how many operands may be
memory addreses

� Regularity of format:
� Variable/fixed length instructions
� Few or many formats

� Number of addressing modes
� Registers: special/general purpose, are they implied in instructions?

5/3/2002 120

Tour of the Addressing Modes

Memory[Memory[Reg[6]]; Reg[6] + Reg[6] + size@($6)+Autoincrement deferred

Reg[6] = Reg[6] - 1; Memory[Reg[6]]- ($6)Autodecrement

Memory[Reg[6]]; Reg[6] = Reg[6] + size($6)+Autoincrement

Memory[Memory[Reg[6] + 100]@100($6)Deferred

PC + 100100* PC-relative

Memory[Reg[6] + 100]100($6)* Base/Displacement

Memory[Reg[6]]($6)Register deferred

Registers[6]$6* Register

100100* Immediate

MeaningExampleName

5/3/2002 121

Accumulator Machines

�Early machines and many microcontrollers use an implied
register called an accumulator
� Operands per instruction: at most 1
� Addresses per instruction: at most 1
� Formats: variable length, few formats for ease of programming
� Addr Modes: few (typically immediate and PC relative)
� Registers: one, implied

�Encode A = B + C
load addressB

add addressC

store addressA

5/3/2002 122

Stack Machines

�Machines where data is on an implied stack
� Operands per instruction: at most 1
� Addresses per instruction: at most 1
� Formats: variable length, few formats for ease of programming
� Addr Modes: few (typically immediate and PC relative)
� Registers: none (but there are often hidden registers for performance)

�Encode A = B + C
push addressB

push addressC

add

pop addressA

5/3/2002 123

CISC Machines

� Intel x86, Motorola 680x0 are examples
� They are register-memory architectures (some operands may be memory

addresses)
� Operands per instruction: variable, up to 2
� Addresses per instruction: 1
� Formats: variable length (x86 is between 1 and 17 bytes), many formats
� Addr Modes: x86 has at least 7, 68k has more
� Registers: usually some special purpose and some general

� Encode A = B + C
load r1, addressB

add r1, addressC

store r1, addressA

2

5/3/2002 124

True CISC

� The VAX was/is the ultimate CISC machine
� Operands per instruction: variable, up to 3
� Addresses per instruction: variable, up to 3
� Formats: variable length (1 to 54 bytes!), many formats
� Addr Modes: more than 10
� Registers: 16 general purpose

� Encoding A=B+C is easy: ADD addressA, addressB, addressC
� VAX included loop instructions, as well as call & return
� VAX was an orthogonal instruction set -- very complicated implementation

5/3/2002 125

RISCs

�Typically load-store architectures
� Operands per instruction: 3
� Addresses per instruction: 0
� Formats: few formats, fixed length
� Addr Modes: few (usually 3 or 4)
� Registers: many general purpose

�Encoding A=B + C.

5/3/2002 126

Summary

lowhighCycle time

lowhighmediummediumCPI

highlowmediummediumInstruction count

lowerhighest?highhighMemory overhead

hardeasyeasymediumCompilation

tiresomeeasymediummediumAssembly coding

lowhighhighhighInstruction density

easyhardeasyeasyImplementation

RISCCISCStackAccumulator

5/3/2002 127

Trends
� The 1960s: expensive memory, poor compilers, poor implementation

technologies:
� Goals: simple compilers/assemblers, simple implementation, good density
� Results: simple ISAs, regular formats, compact encoding

� 1970s: better impl. technologies, poor compilers, expensive (but fast)
memory, high software costs

� Goals: simple compilers, high code density, easy assembly coding
� Results: powerful ISAs, irregular formats, complicated implementation

� 1980s: improved implementation, compilers, cheap (slow) memory:
� Goals: high performance by pipelining, simple implementations,
� Results: simple ISAs, regular formats, lots of registers

