Pipelining

Pipelining Defined

* Metaphor: assembly line
* Split a job into N sequential sub-jobs, each taking roughly the sume amount of
fime.
* Each sub-job is processed by a different resource (station).
* The job moves from one station to the next when it is completed.
* Example: doing laundry
* Sub-jobs: washing, drying, folding/ironing
* Each job takes 30 minutes
* How long does one load take? 5 loads? N loads?

51372002

"

5/13/2002 102

Performance

* Each pipe stage must take equal time.

* Throughput is enhanced, latency may be longer. Why?
* What is the ideal speedup?

* What factors keep us from attaining this ideal?

3

MIPS Pipelining

* Break the single cycle up into 5 sub steps.
* IF: Instruction Fetch — get the next instruction
* ID: Instruction Decode — decode the instruction & read the registers
* EX: Execute — use the ALU, calculate branch address
* MEM: Memory — read/write memory
* WB: Write Back — write results back to the register file
* On each cycle, the machine does a little work on each instruction in the
pipeline.
* How many cycles does a single instruction take?

5132002
(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).
F: Instuuction fetch | ID: Instruction decade/ EX: Exeeute/ MER: Memory access | WE: Write back

register file rearl address calculation

5132002

145

* What is the CPI?
s3am I
Performance vs Single Cycle

Program
execution 2 1 & 8 10 12 14 16 18
prin Time T T T T T T T T T
{in instructions)

st toosoy [l oo [y | oaa o

I 52, 200(30) Ens IO peg | Al |0 ke

e ————
I3, 300(30) B s recton
N

Program
execution Time 2 1 6 8 10 12 14
i | | ! | ! ! !

wn tooso [P [o | T

—
1w 52, 200500 zna | Reg | oaw | D3 peg
+——¥ sl Jata
I $3, 300(50) Zrs |t freg | Aw |0 ke

2ns 2ms Zzns 2ns 2ns

(COPYRIGHT 1098 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).

5/13/2002 146

Why It’s Not So Simple

*We need to remember information between stages.

* There may be dependencies between instructions:
* Data dependencies:

addi $t0, $0, 13
add $tl, $t0, $tO

* Control dependencies:

beq $t0, $t2, somewhere # what if the branch is taken?

add
div

* Ignore the dependencies for now. ..

51372002

"

Adding Pipeline Registers

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).

e

5/13/2002

18

Pipeline Register Contents

* What information is needed in each pipeline reg?
* IF/ID:

« IDJEX:

* Ex/Mem:

* Mem/Wh:

Stages: Fetch, Decode, Execute

5132002

9

* Instruction Fetch:

* Get (and save) the next instruction; get (and save) nPC
* Instruction Decode:

* Read the two registers (save these values)

* Save the sign-extended immediate

* Save the RD and RT register numbers
* Execute:

* Use the ALU, save the result

* Decide which is the real Destination register.

* Calculate branch target

5132002

150

Stages: Memory & WriteBack

* Memory:
* Branches: set the PC to the new target (if taken)
* Memory instructions: access memory and save the result (on loads)
* Other: just pass the ALU result along

* WriteBack:

* Select which result to write to the register file (if necessary)

Control Lines

5132002

151

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).

5/13/2002

152

Adding Control Bits to the Pipe Regs

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).

Instruction

IF/ID ID/EX EX/MEM MER/WB

51372002

153

