CSE 378 A

Quiz Section #4

Simple MIPS Machine

Today we will finish our discussion of the single-cycle, simple implementation of the MIPS processor. Note that the implementation presented in quiz section is far from complete – you will have to complete it yourselves in the near future.

Instruction Types

· I-Type
The I-type instruction contains two register references, and one 16-bit immediate value. For example, addi $t0, $0, 4 would be none other than I-type. Rs would be $0, rt would be $t0, and the immediate would contain ‘4’. These instructions are encoded as follows:

How would this instruction flow through our machine?

Another example of an I-type instruction is lw $t2, 4($sp). In this case, $t2 would be in rt, and rs would hold $sp. How would this instruction go through the machine? Store instructions also fall into this category.

Also, note that the branch instructions are I-type instructions as well. For example, if we have beq $t2, $t3, 1000, then rs would contain $t2, rt would contain $t3, and the immediate would be 1000. For branch instructions that require only one register (all the 0-comparison ones) do not use rt.

· R-Type
The R-type instruction contains three register references, for register-to-register operations. Note that this leaves us extra space to encode both the shift amount (for the shift instructions), and the function field (to extend our possible opcodes for these instructions). One example of an R-type instruction is add $t0, $t1, $t2. In this case, rd would have $t0, rs would have $t1, and rt would contain $t2. Here is how these instructions are encoded:

How would this instruction flow through our machine?

· J-Type
A J-type instruction simply encodes an address (with the lower two bits removed) to which we wish to jump. Why can we remove the lower two bits? One example of a J-type instruction is jal myfunction. The instruction would be encoded like so:

What path through our machine would this type of instruction take?

Discussion

When designing a processor like MIPS, there are many design decisions and tradeoffs that have to be considered and decided upon. They all reflect upon the overall capabilities of the processor. For example, consider the following questions.

What would happen to our machine if we extended the opcode by several bits?

What about if we wanted to have 64 registers?

What if we wanted to be able to encode larger addresses / immediate values within our instructions?

Any other design tradeoffs that you can see in this machine?

Here is some more food for thought: in the not-so-distant future, we will begin to move from 32-bit to 64-bit processors. Intel already tried, and missed. Recently, AMD released their Opteron processor, that supports both 32-bit and 64-bit modes of operation natively. How much would it take to make our MIPS processor work as a 64-bit machine? What exactly would we need to change in our implementation? What benefits would this give us? Any downsides?

In the Future

Note that, as it is right now, our machine is certainly very very slow. Using a multi-cycle design is a step in the right direction, but it falls short in many ways. In the future, we will discuss the solution to this problem (and also the approach used in building processors today) – pipelining.

opcode

6 bits

rs

5 bits

rt

5 bits

immediate value

16 bits

opcode

6 bits

rs

5 bits

rt

5 bits

rd

5 bits

shamt

5 bits

func

6 bits

opcode

6 bits

address

26 bits

